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1. Introduction

The composite resonator consists of a uniform thin layer etched in a small

well-defined region of a semiconducting wafer to form a diaphragm, upon which is

deposited a thin piezoelectric film along with the electrodes to form a resonant

region directly on the wafer. Under this program the case of the aluminum-

nitride film on gallium-arsenide was investigated.

Before proceeding with a discussion of the work performed under this

program, it is essential for clarity that the meaning of the words "energy

trapping" be understood. Since the pure thickness-extensional resonant fre-

quencies are cutoff frequencies, there is usually a nearby frequency range in

which the transverse mode shape is evanescent. There is also a nearby frequency

range in which the transverse mode shape is trigonometric. Consequently, by the

selection of the appropriate thickness-extensional overtone (or fundamental)

and/or the appropriate adjustment of the geometry in the electroded and unelec-

troded regions, the transverse modal behavior can be made to decay with distance

away from the electrodes in the unelectroded region. The resulting vibration is

called a trapped energy mode, which radiates a controllably small amount of

energy into the adjacent thick portion of the semiconducting wafer and, hence,

results in the highest possible Q, albeit with many nearby spurious modes with

high Q. Alternatively, the overtone and/or geometry can be selected so that the

mode does not decay with distance away from the electrode in the unelectroded

region and the resulting vibration is not a trapped energy mode. In this case

much more energy is radiated into the adjacent thick portion of the semiconduct- -

ing wafer and much lower Q's result. Although there are still many nearby

spurious modes, they are less troublesome because the Q's are lower. Most

experimental work on the composite resonator reported has been for this latter ...

I~NSPECTEDJ
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case. On the other hand, before this program was started, a detailed analytical

treatment of the composite resonator for the case when trapping is present

appeared in the literature I along with a detailed discussion of when trapping is

and is not present. Essentially motivated by work done under this program,

experimental results obtained at Westinghouse when trapping is present have

2recently been reported in the literature . However, the results are for a

piezoelectric thin film on silicon rather than on gallium-arsenide.

2. Discussion of Work

It has been found that the fundamental essentially thickness-extensional

mode will not trap for an aluminum-nitride film on a gallium-arsenide diaphragm

in the flat plate configuration. However, the fundamental mode will trap if the

gallium-arsenide diaphragm is appropriately notched a small amount in the

electroded region, as shown in Fig. 9 of Ref. 1. In addition, we have found

that the second essentially thickness-extensional mode will trap for the same

film and substrate materials in the flat plate configuration for a ratio of

film-thickness to diaphragm-thickness larger than .69.

An analysis of the vibrations of a composite resonator, which is driven by

the application of an a.c. voltage across strip electrodes on the major surfaces

of the film, has been performed. The analysis includes the pertinent waves in

the active region of the composite resonator, as well as all radiating waves in

the thick gallium-arsenide plate. The solution is obtained by satisfying the

differential equations for the piezoelectric film and semiconductor as well as

all boundary conditions on the major surfaces of the film and semiconductor

exactly and using the appropriate variational principle to satisfy the remaining

conditions along the minor interfaces approximately. The minor interfaces

separate the electroded from the unelectroded regions of the resonator and the

I'm
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thin region of the gallium-arsenide from the thick region. Both the configura-

tion in which the film ends at the edges of the electrodes and in which it

continues to the edges of the etched diaphragm have been considered when

trapping is not present, along with the latter configuration when trapping is

present. In each instance the Q at the resonance condition has been calculated.

In performing the aforementioned calculations we have found that it is

imperative that all radiating plate waves in the thick region of the gallium-

arsenide be included in order to achieve accuracy. Since at a given frequency

the number of radiating waves in a plate goes up significantly with thickness,

we have considered gallium-arsenide wafers no thicker than 8 mils at a frequency

around 132 MHz, for which there are 30 radiating plate waves. Specifically,

calculations have been performed for thicknesses ranging from 1.5 to 8 mils.

The 1.5 mil case was considered at an early stage in the calculations to check

the program with as small a number of dispersion curves as possible. All the

definitive calculations were for a film thickness of 7 microns and a diaphragm

thickness of 14 microns and the lateral dimensions were adjusted slightly to

maintain the same resonant frequency for computational convenience. The major

- calculations were performed for wafer thicknesses ranging from 4 mils to 8 mils

. because this is considered to be within the practical range. The calculated Q

is a very rapidly varying function of the wafer thickness. Consequently,

calculations had to be performed for very small increments in thickness in order

to get all the peaks and valleys in the interval.

In the absence of trapping in the case in which the film ends at the edges

of the diaphragm, the highest Q obtained is about 5000 and the lowest is about

10 and there are about 10 peaks for thicknesses between 4 mils and 8 mils. The

highest valley has a Q of 1000. The calculations were performed using an incre-

ment in thickness of 1 micron. In the case in which the film ends at the edges
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of the electrode, the highest Q calculated is about 15,000 and the lowest Q is

about 200. Calculations were performed when trapping was induced by notching

the diaphragm under the electrode. As expected, the Q due to radiation can be

made as high as we wish simply by extending the lateral dimensions of the film

and diaphragm. We have calculated Q's higher than 200,000 for quite reasonable

dimensions. In interpreting the foregoing information it should be remembered

that the high Q's calculated should be higher than the actual Q's because the

material Q and the Q due to radiation into the air are not included. The

results discussed above mean that in order to obtain reasonably high Q when

trapping is not present for a given wafer thickness, the thicknesses of the film

and diaphragm must be very precisely selected. The aforementioned relative

stability and instability in Q when trapping is and is not present has been

observed at Westinghouse Defense and Electronics Center but with silicon dia-

phragms rather than gallium-arsenide.

A brief version of this work has been published as Ref. 3 and a more com-

plete version has been published as Ref. 4. Both Refs. 3 and 4 are appended to

this report.

The type of calculation performed in Refs. 3 and 4 is extremely cumbersome

to perform and was preliminary to constructing a perturbation theory to calcu-

late the Q due to radiation into the bulk semiconductor, which is much easier to

use. The more cumbersome direct calculation is required in order to check the

accuracy of the perturbation calculation.

A perturbation analysis of the Q due to radiation into the semiconductor

wafer has been performed. This analysis is considerably less cumbersome to use

3,4than the earlier direct variational treatment and is not restricted to the

case of strip electrodes and diaphragms. In the treatment the resonant mode of

interest is determined from the equation for transversely varying essentially

wj%
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thickness-extensional modes in composite resonators and simple approximate but

very accurate conditions at the edge of the diaphragm. This resonant mode is

then used to determine the radiation into the semiconductor wafer by means of a

variational approximation procedure. Then the resonant mode and the radiation

field are employed in a perturbation integral to calculate the Q. In this work

only the configuration in which the film continues to the edges of the etched

diaphragm is considered both when trapping is and is not present. However, in

the latter work, the cases of rectangular electrodes and diaphragms are con-

sidered.

3,4Of course, as in the earlier work3 , all radiating plate waves in the

thick region of the gallium-arsenide must be included to achieve accuracy.

Calculations utilizing the perturbation procedure have been performed for the

case of strip electrodes for the same definitive geometries considered in the

earlier work3 '4 . These geometries consist of wafer thicknesses ranging from 4

mils to 8 mils and a film thickness of 7 microns and diaphragm thickness of 14

microns. Although different lateral dimensions were considered in this work,

for the strip case for comparison with the earlier work a diaphragm width of 500

microns was used when trapping is not present and 600, when trapping is present.

The calculated results for the strip case are in good agreement with the earlier

more cumbersome direct calculations3 ,4 . When trapping is not present the

highest Q's calculated are very nearly the same as those obtained in the earlier

direct calculation3 '4 , but the lowest Q's calculated by means of the perturba-

tion procedure tend to be nearly an order of magnitude higher than those cal-

3,4
culated by the earlier direct procedure . We are not absolutely sure of the

reason for this discrepancy, but there are two possibilities. The perturbation

procedure might be tending to lose its accuracy for low Q because of the in-

creased radiation or the resonant frequency might not have been sufficiently

'
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precisely determined by means of the earlier direct procedure 3'4 for the accu-

rate determination of the lowest Q values. However, the fact that the highest

Q's calculated by the perturbation procedure are slightly higher than those

calculated by the direct procedure seems to support the latter possibility. The

location of the peaks and valleys of Q with wafer thickness determined by means

of the perturbation procedure is in quite good agreement with those obtained

from the earlier direct calculation. For the case of square electrodes and

diaphragms, in the absence of trapping the calculated Q's are roughly between

1/2 to 2/3 of the values in the strip case. This is as expected because of the

radiation in the two orthogonal directions for square diaphragms. When trapping

is present the calculated Q's for both the strip and square cases increase very

rapidly with the distance from the edge of the electrode to the edge of the

diaphragm.

A brief version of this work has been published as Ref. 5 and a more

complete version will be published as Ref. 6. Both Ref. 5 and a preprint of

Ref. 6 are appended to this report.
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ON THE REDUCTION IN QUALITY FACTOR OF THE PIEZOELECTRIC THIN FIlM ON SEMICONDUCTOR
COMPOSITE RESONATOR DUE TO RADIATION INTO THE BULK SEICONDUCTOR

D.S. Stevens', H.F. Tiersten and D.V. Shick

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

I, Introduction Using the existing9 constants of aluminum-nitride,
we have found that the fundamental essentially

The composite resonator consists of a uniform thin thickness-extensional mode will not trap for an
layer etched in a small well-defined region of a aluminum-nitride film on a gallium-arsenide
semiconducting wafer to form a diaphragm, upon diaphragm in the flat plate configuration

.  How-
which is deposited a thin piezoelectric film along ever, the fundamental mode will trap if the
with the electrodes to form a resonant region gallium-arsenide diaphragm is appropriately notched
directly on the wafer. In this work calculations a small amount in the electroded region, as shown
are performed for the particular case of the in Fig. 9 of Ref.7. In addition, we have found that
aluminum-nitride film on gallium-arsenide. the second essentially thickness-extensional mode

will trap in the flat plate configuration for the
Before proceeding with a discussion of this work, same film and substrate materials for any ratio of
it is essential for clarity that we briefly explain fu1n-thickness to diaphragm-thickness.
the meaning of the words "energy trapping." Since
the pure thickness-extensional resonant frequencies In this work an analysis of the vibrations of a
are cutoff frequencies, there is usually a nearby composite resonator, which is driven by the appli-
frequency range in which the transverse mode shape cation of an a.c. voltage across strip electrodes
is evanescent. There is also a nearby frequency on the major surfaces of the film, is performed.
range in which the transverse mode shape is trig- The analysis includes the pertinent waves in the
onometric. Consequently, by the selection of the active region of the composite resonator, as well
appropriate thickness-extensional overtone (or as all radiating waves in the thick gallium-
fundamental) and/or the appropriate adjustment of arsenide plate. All previous analyLical work
the geometry in the electroded and unelectroded expressly ignores radiation into the bulk semi-
regions, the transverse modal behavior can be made conductor except one treatmen&0 , which unrealis-

to decay with distance away from the electrodes in tically ignores the junction between the etched
the unelectroded region. The resulting vibration diaphragm and the bulk semiconductor. The solution
is called a trapped energy mode, which radiates a is obtained by satisfying the differential equa-
controllably small amount of energy into the adja- tions for the piezoelectric film and semiconductor
cent thick portion of the semiconducting wafer and, as well as all boundary conditions on the major
hence, results in the highest possible Q, albeit surfaces of the film and semiconductor exactly and
with many nearby spurious modes with high Q. using the aopropriate variational principle - to
Alternatively, the overtone and/or geometry can be satisfy the remaining conditions along the minor

selected so that the mode does not decay with interfaces approximately. The minor interfaces
distance away from the electrode in the unelec- separate the electroded from the unelectroded
troded region and the resulting vibration is not a regions of the resonator and the thin region of the
trapped energy mode. In this case much more gallium-arsenide from the thick region. Past
energy is radiated into the adjacent thick portion experience shows that this type of approximation
of the semiconducting wafer and much lover Q's yields extremely accurate results if all the proper
result. Although there are still many nearby waves are includeda ' 3 Both the configuration in
spurious modes, they are less troublesome because which the film ends at the edges of the electrodes
the Q's are lower. All experimental work on the and in which it continues to the edges of the
composite resonator reported to date has been for etched diaphragm have been considered when trapping
this latter case1' . On the other hand a detailed is not present, along with the latter configuration

analytical treatment of the composite resonator when trapping is present. In each instance the Q

for the case when trapping is present appears in at the resonance condition is calculated.
the literature" along with a detailed discussion
of when trapping is and is not present. 11. Basic Equations

The differential equations of motion and electro-
statics and linear piezoelectric constitutive equa-

Present address: AT&T Bell Laboratories, tions for the piezoelectric film may be written in
1600 Osgood St., North Andover, HA 01845. the tensor form"1' s5

0090-5607185 0000-0311 $1.00 © 1985 IEEE 1985 ULTRASONICS SYMPOSIUM - 311
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f f falong with (6) and (7), which remain unchanged.
T f P f 'f

, D f 0,
'  

(1) The quantity p' is the mass density of the upper1j~] 1electrode.

Tf f f +f f
Ti. CijkUk, ekijPk Figure 2 shows a schematic diagram of a cross-

section for the configuration in which the film
i e ik-Uk,",eikk, (2) ends at the edges of the electrodes. The boundary

conditions on the major surfaces of the composite
plate in the electroded region, which still contains

where the notation is conventional. The equations the film, are exactly the same as in the previous
of motion and the linear elastic constitutive
equations for the gallium-arsenide may be written cas ower, the undlect ote
inmajor surfaces of the unelectroded plae, which no

longer contains the film, are much simpler than in

s s..s s s s (3) the previous case and in place of (5) -(7) we have
.J.i= u , T ij kk, Z 3 T~af i

0at x 3 =fi 0 and x3 -h (10)

and we note that the equations are too cumbersome

to write out in detail. At this point we intro- For either configuration the corresponding
duce a Cartesian coordinate system xl, x 2 , x 3 with boundary conditions on the major surfaces in the

xhe ,3-axis normal to the major surfaces of the region of the bulk semiconductor are
aluminum nitride film and along a cube axis of the T

s 
3 0 at x3 -0 and x3  (is

gallium-arsenide. Since aluminum-nitride has small j 3 3

piezoelectric coupling, for small wave and decay
numbers along the plate, which are the only ones of Since the piezoelectric coupling is small in
interest in the active region, we need retain only aluminum-nitride, we may transform the inhomo-

x 3-dependence of all electrical variables and we geneity from the boundary conditions in (8), into
have the differential equations by means of the trans-D 0, D te f 3 . (4) formation shown in Eqs.(3.26) of Ref.7, which is

considered to be part of this work 
.
5. Furthermore.

Figure I shows a schematic diagram of a cross sec- since we have replaced (1) 2 and (2) 2 by (4), no
t on of a thin aluminum-nitride film on a thin electrical conditions need be satisfied at a minor

,allium-arsenide layer composite trapped energy interface. Then the conditions that should be
resonator for the configuration in which the film satisfied at each minor interface are the conti-
ends at the edge of the diaphragm. En the unelec- nuity of u3, u, T13 and T7 . However. since in
croded regions the boundary conditions on the the approxiatin technique we employ the solution
major surfaces are is written as a sum of eigensolutions, each of

Tt= 0 D .0 at hf (S) thichnsadsbiendary homogeneous differential equa-3T , 3 cions and boundary conditions on the major surfaces
-s ... s uu s f for one of the three regions, i.e., the electroded7" - s . u = ': =0 at x3= (6)3> j 3 J 0'composite, the unelectroded composite and the bulk

semiconductor, exactly, we cannot satisfy the
T3 = 0 at X =- h

s  
(7) continuity conditions across the interfaces between

the regions exactly. Nevertheless, the remaining

:;here t he superscripts f and s stand for the thin continuity conditions across the interfaces may be
film and semiconductor layer, respectively, and ,' satisfied approximately along with the inhomogen-
ts the mass density of the ground electrode. The eous driving term resulting from the aforementioned
electrical condition in (5) is a consequence of transformation by satisfying the proper form of the2 appropriate variational principle" of linear
the fact that the x1 - and x2-dependence of all piezoelectricity, in which all that remains is an
electrical variables has been left out of account integral over the inhomogeneous forcing term plus
and the electrical potential in space is bounded at integrals over the interfaces because all other
X= . Since the electrodes are much thinner terms in that form of the variational principle
3 vanish on account of the equations and conditions
than either the thin film or the layer, we have satisfied by the solution functions employed

"

employed approximate thin plate equations for The form of the variational principle of interestthe electrode plating in (6)1, and we have made use here is given in Eq.(6.44) of Ref.ll. Since the

of the fact that the mechanical stiffness of the solution functions satisfy the aforementioned
very thin electrode plating is negligible for small equations and conditions, all that remains of
wavenumbers along the plate. Similarly, on the Eq. (6.44) of Ref.ll is
major surfaces of the composite plate in the eLec- hI ff2e3 Vx3it
troded region the boundary conditions are 33 "3 - e ,53t) fdx dx

f , V at 0 (0 o o " 3 h3

3 0 at f3  0 ) " T 3 dx

ob
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-M
tan .O h criitantan h+c tan f (16)

-h0 
f 7

+ f (Tll5Q+T13 6u) dx3 + [TII and""
_Rs Xl d  R.". G°  + cr11 t'" I _-__

2 o f 2 o f,is _ us Ts-s ffcs j cos ,.
T 1 )(6u 1 + (T 3 "T1  wa+5u3  ) + f ) s

11 1 3 1 (e )- c
S33 

r  33(u -- us (6 +6s)+ zc(T +33 " 33 f _f % T

11f 33 c 33
h _f s

-5)T s dx + (T -T f )(. a c p 6/ hS (17)
13 x.L 3 2 11 11 1 1sf)f(7

c 33P h-

+ (T- 2 T) f - T -r u af- f)('T
S3-f f f + f f -f + Similarly, for the completely electroded composite

plate driven by a voltage it has been shown that
5T f ) +(a3 f u3 ) ( T3-f -f + AT 3 f X= dx3 rethe purethickness-extensional resonant frequencies

11 3 3 1 i 3aegiven by

f f0/ o(
_ -{[(is .T )(5us + s&u) + (Tl3 . e (c3 / ) .f l+P°/G),

2 11 1 1 1 1
.Rs where
Ts ) 6 s + 's) + (us Gs )(! s + Aisf0k2 \o 2~f--[ r°
TI3) (3 +u3 )  1U 1 U 1) ( -I 11 pO 1-- " - tan _cl f tan -i(ooi2 f - c t f

+ (U -u3s)(5T1 + 1 dx3=0 , (12)
3lx d 3 R" -R' (I - cr tan o hf tan o fh ),

for the case when trapping is not present and the 
"

film extends over the entire diaphragm. Mhen the k ( f / _f e f h/ fh f

film ends at the edges of the electrodes the fifth 33 33'
integral in (12) is not present and the second
integral is replaced by The difference between the resonant frequencies of

pure thickness-extensional vibrations of the
h f  composite plate with and without a driving elec-

(Tf 3 -f f !af( trode e --' for the same f, is very

1o + 1  3 important when trapping is present.

"hen trapping is present with a notch under the V. Straight-Crested Dispersion Relations
electroded region, as shown in Fig.3, the fourth

sto 0 (instead of -hs  In this section we obtain the straight-crested
integral is taken from dispersion relations for the composite plate, the
to 0) and there is an additional term thin diaphragm without the film and the bulk semi-

_h conductor because these determine the solution
S su + us x (14) functions that are used in the variational condi-

+ _r (T'!us + T13 dx tion (12). Since these eigensolutions in each111 1 ,. region satisfy the homogeneous differential equa-
tions and boundary conditions on the major surfaces.

in Eq.(12). they are too cumbersome to present here-5 .

I. Pure Thickness-Extensional Vibrations The solution for decaying waves in the unelectroded

composite plate is presented in Eqs.(4.14)- (4.24)
Since in all cases the composite resonator will be of Ref.7, which is considered to be part of this
operated at a frequency in the vicinity of one of work. As noted in Ref.7, the solutions for travel-
the pure thickness-extensional resonances of the ing waves in the unelectroded and electroded
composite plate, the pure thickness-extensional composite plate can readily be obtained from the
resonant frequencies of the composite are of solution presented. The solutions for the simpler
particular importance in this work. It is shown cases of the diaphragm without the film and the
in Sec. III of Ref.7 that for the composite plate bulk semiconductor are not as cumbersome, but are
without a driving electrode but with a ground also too lengthy to present here's. These types
electrode, the pure thickness-extensional resonant of solutions are presented in a number of
frequencies are given by placesi ,. 9

.f f1/2.o
e c33/p) If(l - R"/GO) , (15) The pertinent dispersion curves for the aluminum-

nitride film on the gallium-arsenide layer compo-
o site plate are shown in Fig.4. We do not distin-

where If is the appropriate root of guish between the electroded film with shorted
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electrodes and the unelectroded film in the figure. into (12), employing (2)1 and (3) and performing
This is done in great detail in Ref.7. Further-
more, when required,the difference between the t the integrations, we obtain's an equation of the

can be calculated from (e -- ) given in the last f or
section. The dispersion curves are for a film
thickness of 7 microns and a diaphragm thickness L. i.. L
of 14 microns. The pertinent dispersion curves .1 2.- 6.1
for a 14 micron thick gallium-arsenide diaphragm % .
are shown in Fig.5. The lowest 17 real dispersion 6K (a)K()a%
curves for the bulk gallium-arsenide plate are -l
shown in dimensionless form in Fig.6. For the cl E-1
fundamental essentially thickness-extensional n n n
resonance for the composite dimensions mentioned (v> () . + )
(around 132 MHz), this number of dispersion curves z L. - L L
is for a gallium-arsenide wafer thickness of about ' l C=l a-I
5 mils. In this work we perform calculations for
wafer thicknesses up to 8 mils for which there are )b
30 real dispersion curves for a frequency of
132 MHz. However, we do not bother to show the n K(
figure for more than 17 in this work. + L L XNO v, (

V. Forced Vibrations of Composite Resonator 
o1 Y-1

where the expressions for Z, a J.
In this section we determine the essentially 2c, a vC' / .
thickness-extensional vibrations driven by the and b are too lengthy to present here. Since
application of a steady-state driving voltage to the variations in (21) are arbitrary, we obtain''
the strip electrodes on the surfaces of the piezo-

electric film of the composite resonator shown in the inhomogeneous linear equations for the K
any of Figs.l - 3. Since we include radiation into K ( a and K(A) in the form
the bulk semiconductor, we can use the solution to n
calculate the Q at resonance of the mode resulting (3),
from radiation into the bulk semiconductor. K + 1 K(a)b - V 5 )  1, 7,

:n accordance with the earlier discussion we take n R
tne ipproximate solution in the lorm . ( a + -Kh--

ff ~ f ixta.
e VX ~=K U( ) f() 33 V3 n 4.

-a K a f r~ h(~ 0, 2-1,n
Z.1 33

U~Y K K b2"..

nn n~=

U K (ua u
s  

N() us

3r- :L VI. Quality Factor Resulting from Radiat.onn
(Y)s(v(20) In this section we calculate the quality factor duea L u. to radiation into the bulk semiconductor for each

of the three cases from the analysis presented in
the previous section. Although the solution maywhere il, n and are the number of branches of che be obtained from the analysis in the previous sec-dispersion curves included in the electroded tion at any driving frequency for which all the

composite, unelectroded composite or diaphragm and pertinent dispersion curves are available, in thisbulk semiconductor. respectively, which are given work we are interested in the solution only at thein Fids.4- b. The eigensolution functions G fundamental essentially thickness-extensional-s(3) af(30 S() S resonance for each of the three configurations
u u ua  u denote the solution func-cofurtnsa ' a I a ' a It is clear from past experience'- .:

3 that under
tions that satisfy the differential equations and these circumstances we need consider only the
the boundary conditions on the major surfaces for essentially thickness-extensional branch in the
each of the respective regions and yield the dis- composite region (either electroded or not) of the
persion curves shown in Figs.4- 6 and which are resonator, which is the curve labeled I in F..
too cumbersome to present here" . Since the solu- However, in the thin region of the semiconductor

n functons in (20) ire fixed, only the ) without the tiln and the bulk semiconductor all %
, - , pertinent dispersion curves shown in the respect-.e

K() e v(ei)S nd re varied when (20) ts substituted FLgs.5 and b must be included to obtain accurac:.
into (12). Accordingly, substituting from (20) The use of only one branch for the composite re.
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means that we always have f- 1 and n 1 for the in Q with wafer thickness similar to Fig.7, but
configuration shown in Figs.l and 3 but not for the in this case the Q's are considerably higher. It
configuration shown in Fig.2, for which all curves can be seen from the figure that the highest Q
shown in Fig.5 must be included, obtained is about 15,000 and the lowest Q is about

200. Calculations were performed when trapping was
As usual, the quality factor Q is defined by induced in the fundamental mode by notching the

diaphragm under the electrode as shown in Fig.3.
Q- (K+U)/Erw , (23) As expected, the Q due to radiation can be made as

high as we wish simply by extending the lateral
where f dimensions of the film and diaphragm. Figure 9

T d h gives Q as a function of (d- 1), i.e., the distance

S t 1  • dx F dx from the edge of the electrode to the edge of the
oTd . s 2diaphragm. It can be seen from the figure that Q0 - hf  increases very rapidly with (d - L) and at d - 2,l T d h, Q 70,000 for this geometry. For these calcula-T 2 E e (cu , I tions the wafer thickness was 6 mils. £ven when

0-d s trapping is present the Q is a varying function of
wafer thickness, but the range of the variation is

+ c u u+2c u13u 3 +C 4 4 (ui 3  less than 1/10 of that when trapping is not present,
333,3 3,3 131u3,3 3 which is not of interest since the Q with trapping

)- is so much higher than the Q without trapping. In
+ u3 ,1 )(u

l ,3 +u 3 ,1  )dx3j interpreting the foregoing information it should be
T 0 remembered that the high Q's calculated should be

Et W 2 d t - Re (-Tla) dx (24) higher than the actual Q's because the material Q
2 laa xid 3' and the Q due to radiation into the air are not

0 -h included. The results discussed above mean that in

order to obtain reasonably high Q when trapping is
in which T is the period of the vibration and we not presentfor a given wafer thickness the thick-
have taken the liberty of writing the integrals in nesses of the film and diaphragm must be very
(24)1.2 over discontinuous functions" to achieve precisely selected.

brevity. For a given geometry and mode, resonance
is determined by obtaining Q over a (narrow) range Since the variational condition in (12) does not
of frequencies and finding the frequency for which expressly match the mode shape at the interfaces
Q is a maximum, unless the solution is exactr, the extent to which

the calculated mode shape matches at the inter-
In performing the calculations we have found that faces gives an indication of the accuracy of the

it is imperative that all radiating plate waves in approximate solution obtained. Typical plozs of
the thick region of the gallium-arsenide be the u 3-displacement field. which is the larze one
included in order to achieve accuracy. Since at a for the essentially thickness-extensional modes
given frequency the number of radiating waves in a considered here, for the configurations shown in
plate goes up significantly with thickness, we have Figs.l and 2 are shown in Figs.l0 and 11. respect-
considered gallium-arsenide wafers no thicker than ively. It can be seen from the figures that the
8 mils at a frequency around 132 MIIZ, for which u -displacement field matches quite well at the
there are 30 radiating plate waves. Results are 3interfaces. Consequently, we can conclude that the
presented for wafer thicknesses ranging from 4 mils approximate solution obtained is quite accurate.
to 8 nils because this is considered to be within
the practical range. All the results presented are Aknowledgeents
for a film thickness of 7 microns and a diaphragm

. thickness of 14 microns and the lateral dimensions We wish to thank Dr. K.M. Lakin of Iowa State
of each configuration were adjusted slightly to University for referring us to Ref.8 and acquaint-
maintain the same resonant frequency for computa- ing us with the difficulty mentioned in Ref.9.
tional convenience. Since the calculated Q is a
very rapidly varying function of the wafer rnis work was supported in part by the Air Force
thickness.calculations had to be performed for Office of Scientific Research under Grant .o.
very small increments in thickness, i.e., 1 micron, AFOSR-84-0351.
in order to get all the peaks and valleys in the
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Figure 3 Cross-Section of a Composite Resonator
with the Layer Notched under the Elec-

trodes to Cause Trapping in the Funda-

mental Mode when it does not Trap in the /

Flat Plate Configuration

-J/2IMNz 22

Figure 6 Dispersion Curves for the Gallium-

Arsenide Wafer with .. the Dimensionless
too Frequency Normalized with Respect to the

First Thickness-Shear Frequency.

( ° ,~ooo:Re°°' \ 1

..igure 4 Dispersion Curves for the Composite I o/: ', , I
R;ion Consisting of an Aluminum-Nitride .

Film on a Gallium-Arsenide Layer with 5 S

.he Propagation Wavenumber
Figure 7 Quality Factor Versus Wafer Thickness

/( MH) when Trapping is not Present for the
Composite Resonator Configuration

Shown in Figure 1

Figure 5 Dispersion Curves for the Gallium-
Arsenide Layer without the Thin Film Figure 8 Quality Factor Versus Wafer Thickness

when Trapping is not Present for the

Composite Resonator Configuration
Shown in Figure 2

1985 ULTRASONICS SYMPOSIUM -- 317

- .- w.. e,.,%



Quality fbctor of the piezoelectric thin film on semiconductor composite
resonator resulting from radiation into the semiconductor wafer

DV.SikD.S. Stevens," and~ H. F' jm . ic uns.R e '

* hzomutc. Iro .,'t. Va Vr 121SU-3590

RecciLed 3 March 19 it, ccepted For publication 7 Ma\ 1 986

Tilie coiitpoi)toc reM nlator colisists ofa', Uiit'Orm thin la~er etched in a small xwell-deictiid io
Of J sLIICm)iedaInr0I \kafer to tOrml a diaphragm.l upon w hich is, deposited at thin pICiOclect.rie

!dnt wi. 101i the ctoe to ltoi.11 a resOnailt reglion directly onl the \%iafcr. A11lt nlt tile
!L I,0 1 hiich operate, Ii an 'jseliillk thickiicss-cesteiisiol 'itt e c;cII he -

Siirt, r!' ciicrgr, trapping. almtost all e\istin- experimental w~itk Inl tIIL hIteral ilic
1, 1,0 Ili :~ ~hI tcppiie Is Ilot present. .. \ pre% s 10115 ti xvor.)k cspress I ignlores

) nit thr huilk sernicmoidijetor ecepcft one treatment.l wx InchI Unrealisticalls iuiioics h,

.N..

thl i lic it, r ,-.i; tor dfriseti into essejitialls thickness-cxterisinal x ibration is hrlie
A. npici'ii (alia' to st rip1 elect rodes is pcirtormed. The analysis includes all radiating-

p)ate w;sC i]e n the thiuck portion ot the setnijonduetor. Ihe solution consists ofia sum o)fternms

satist ma, all difnt'Ctial equionM0s and bouiidarv conditions on niajor surfaces exactlr and uses
thie appro)priate. ,arliatioiial principle of linear pietoelectrieitN to satisfy thle remaining
condit ions appro 'a niatcl\. For the ease oftilie a! uminum-nit ride film onl gallium arsenide theQ
is, calculated for hothi thle contigurationm in whieh t he film ends at the edges of the electrodes
and in w~ hit.lI it continues to the edges of the etched diaphragnm w4hen trapping is niot present
and fo(r thle lttler cioiiiguration w hen trapping is present. The calculations show that w heii
trapping is niot present the Q is a very rapidly vrarying function of the ratioI of the composite .

* resonatior thickness to the wafer thickness and that the range of variation is very large. i.e.,
A.between one and two orders of magnitude. The calculations also reveal that when trapping is

present the Q is alw~ar s much larger and its range of variation much smaller than w hen
trapping is riot present.

1. INTRODUCTION trapped energy mode. w~hich radiates a coni rollablk small1

[ilie comlposite resonator consists ota uniform thin layer amount of energy into the adjacent t hick portion oft he semni
conducting wafer and. heiice. results, i the highest possible

* ~~etched in at nmall well-defined region of at semicond uct ing Qabi ihmn er
xatrttrmadahamuponl which is deposited a (hilli Q, aletwtymt na spurious modes, wih high Q

I~ict~ecciic ilmalon, ithtil elctrdesto orma rso- Aiternativelv. the overtone and/or geornetrv caii be selected

nantregon irci onlL the wfer Il this %ok ananalysis of so that the mode does niot decay wvith distance aswa from the
nantregmil dicct x~ ci ii x~o an . 0 eleetrode Ii the unelectroded region and the reCsultig %ibra-

* the ibhrations of a comiposite resonator is presented includ-
* ~~ing the \cry Iniportant t ranss erse behavior of the essentially toii o rpe nrymd.I hscs uhmr
*thickness-extensional modes and the attendant raito energy is radiated into the adjacent thick portion oftI he semni-

* ~inito the bulk semiconductor both for eases ii wh.Ich energy enutn ae n uhlwrQsrsl.Atogthere are still many nearby spurious modes. t he\ arc less
trapping is and is not present. Thle calculations, are per- trulsm beaethQsarlor.A otalepr-

)t~ L)rm ld h renp i cuaaeefa.lu i u -iti efl mental wvork onl the composite resoniantor reported to date

Befre roeedng%%,tllitdi~I~()I () fll or, i i has been for this latter case. Onl the other ham'l, a detailed
* l~t~'e 1 roecdi ~ it i a iscssin o ths wrk. analvtical treatment of tile composite resoniator for the catse

* essential tbr clarits that w~e brictlx explain the meaning of tle
* s( rds -enicrgr t rappinig" Since thle pure tliickimess-exten- wheni trapping is present appears Ili the literatunre along w~ ith

sionl rsonnt tcqieiiiesare utlti reqencis. her is a detailed discussion of when trapping is and is, not present
sl()Ilills rsnn rlutce aeuloch theqeis tahere is sing tile existiing' conistaints ii!;luriiiiiii nitride. wec

*UsUalr at iiearh\ treqiiciicr raiige Il hc h rn~re h~ found that thle funlidamel,1 Cs'eiiiiallk thiekitess-c\-
* 10iiiie hp S isP Ps CaiieCCmit, [1here Is also a nearby treqincy

- tensional mode w ill not t rapl brai aliitiiiiim -it I de l hInI
raiit I in ws hIic i fte I raiiss% erse mode shape is t rigononiet ric. elimasnd

( ocsqieitl .r heseceioi o tleapropiae hiknss galur-rsd dhitplirieti uth inc it-piat. 1n:tI0iTi-

01 tiiit tiiliital lild/o tioiii 1 losw es r. theC fUilLiiiieni, ill) nid ksill 11r,1[ I I, iJ

iisse teiiii 4t11 he iL tId ' Il Ii hett pt

- ~ ~ 11L I l. l S xI('II I I . .c I ll III_ 1x.. CA 1C J . iiti~ ics t hi~i~ai i

22.~ A: ,60 (fl,. Pm.ac: H '92,'18 ,:'0. * . .



resonator, which is driven by the application of an ac voltage onator and thle thin region Of tile galliu-m-arseCniec from f ile
across strip electrodes on the major surfaces of the film, is thick region. Past experience shows that thts" txpc of':ippro\i-

performed. The analysis includes the pertinent waves in the ntation yields extrernelN accurate resuLltsIt if ll] ilh proper
active region of the composite resonator, as well as all radiat- waves are included.1  Bot h thfe k.ontigu ranu in ii %Nh li thle
ing waves in the thick gallium-arsenide plate. All previous film ends at the edges of thli electrod)Les anid 11 %k h ]Ch eonC01-
analytical work expressly ignores radiation into the bulk se- tinues to the edges of the etched dliaphragmn ha ~ hycwn
miconductor excepi one treatment,"' which unrealistically sidered wvhen trapping is. not present, alone, %%iihi thc 'ittci
ignores the junction betwveen the etched diaphragm and tile configuration w.hen trapping is piresent. In icach Inlst~anl c heIL
bulk semiconductor. The solution is obtained by satisfxNing quality factor ( Q) at the resonanee elk1 it urn IN %ateiditted.
the differential equations for thle piezoelectric film and semi- The calculations sitow that Nklhcn t r~ppiiie Is not pIeseni thc

conlductor as wvell ats all bound, sai ary conditions onl the major Q savr apidly, arx ing fn net i of the 1i111()if thI( et 'rn.

,Nurfaces of thle film and slemicoudnector exactly and using the posite resiua tor thick ness. ire . the pIC/CIoClee IiI I til ~n e
appropriate variational principle.' lin which all conditions, semiconductor layer. to (fhe %%iaher duckrici,, tid ihwl t h,
'ire Ih tUral conditions, to satist\N the remaining conditionis ranige of'N aria i on ofQ is' crN laIe it I -C -. Iketw 101"I Ii Ie .iI k% o

% :Aong the: minior interfaces and the inhomlogeneous driving ordecrs ot ragniindc. The C. lctliuusas.Icili i

-% term thial appears in a differential equation I'Mt the film lin thle trappi ng is present thc Q is, alitia' it\ ic tireel .inu ii. -l~
ctLcetroded region approximatel . Tlhc minor interfaces sepa- of\ ariatii 101 %ith thet thICKIInes it(IM L1,11 ''1111 It i .uri tie
rate thle eleictroded fromt the uneleetroded regions, of the res- trapping iki not prciscnit

1I. BASIC EQUATIONS

The difrctt'intiail equations, of imotioni andc clctiroistatics and linear pie/oclceti c Cuistut 11t c qUI Ittil.61 ti llill~iliiill
-' nitride with) _ thle hex~agonal axis nm be writ ten i thle tbrin

(el c". * e u.,e I''' CI2 1)'. 11 0.11" Cq 1

I I. I, I 1> 1,01 1~ (It ,, ("1 I u, 'q

C. U1 '' ,C.t q 0

- ~ ~ ~ ~ 1 It2c I iS i.1) LI!I 111 C 11 h1 11uCil [i t c li ck hai iii I k1itI c I ll I iI! IcIlt. t Ie ci .4t i iu I.r hC 4 Ii_'tt dillh It lciic 1 .

xi Ii CI I t t1111c lint the- C('IINCI 'Iti thal t a M III c fllltiif h \i,\c'ib 111 ItlClc\ denTotes pIrtIt:1 cltf1.'.i ti1101 \ 't11 resp1ct i a

11!:1 tIC At thil itit INC ilotc that1 \\e hiti c tutroducci a. ; i
1

e'.i1iii :'i iat S ICIII III~ .. k wilti the Ik i i ;1 I PO! hi

+v tc ilt"I surf~Ie. ll ti l e aithIII~iiiiII ifitrice tilmi. '.iminu IN ly ,th displaiiiicilt equaVtions ot 11101101tiatict liliii clisItic

L'I1i'Ii(e uii()tr dlie auitu 1 ic/oclectric galluintll ar.cndc 0111nCOnldciutor ktith k . :lrng a Ube ais iJKe IhL form'" .Y

It~~ ~ 14. ( I/i
-1 0

i i t'' !, t hit Ii liecsscni nalli, t hicknCss-ctcttsi0YIi- 4 i ;U ~
t, I dI s I:, tc rcpgitul 'Ioit;1iullTf ilte tut. xi ticl :i-c thII,4, 1

* ' 1~~~ rrest Ill In i % or,., I h( III it% C, oi' (1 i, itil

iii tuttlle fC it ttili 114 4. itt ciccii I II I4.h ilmtl w tii i tricti i ill ICUC i e uAIIIl.jh ri ~i i h

,: ' al c I Ii tel' 1e44 i ' , 11 a' Ali Iu' - l ll JIIi iCC' (It' n110 0ci tcc 1,i on [l'llie .iti . .Oi',titf,'ils (11 th1k, iII.10t
I r 2s 1' I w 1f 4).\ '.c hit\ scit~ I.S I l
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I t ('ri,,'. ",t. ' , t" a s n oi ipoi.te rsn alor consist ig of a 1 thin pie/'o- FI(G 2 ('ros section ofa corm posite resonator v, ith I(he piezoetlectrc fi imn

lectric film on a galuniLT , aiscied lacer sr th the film coeririg the eintrec ending at the edge of the electrodes.

lascr

7' 0. D - () at h it. (9) V, =0at x, =0 andx,= - h (14)

ST 1', th "v"u . u u ,. D 0 at x, -- 0. (10) For either configuration the corresponding boundary condi- ,-

/" = 0 at .V, , (11) tions on the major surfaces in the region of the bulk semicon- .
ductor are '

where the superscripts / and s stand for the thin-film and
semiconductor lakcr, respectively. andp" is the mass density 1", 0 at x, - 0 and. - (1 5)
of the ground electrode. The electrical condition in (9) is a
consequence of the fact that the x, and x. dependence of all Since wre have replaced ( 2) and (4) by( 7) and (8). respec-
elecLrical variables has been left out of account and the deec- tively. no electrical conditions need be satisfied at a minor
tric tield in space vanishes at x, . Since the electrodes interface. Then tile conditions that should be satisfied at
are much thinner than either the thin film or the layer. wke each minor interface are the continuity of u.u,, 1,. and T1 I
have emplo ed approximate thin-plat equations' ' for the and at each free edge are T, = T, 0. However. since in

electrode plating tt l() 1). and we have made use of the fact the approximation technique we employ the solution is writ-
that the nechatical stiffness of the ery thin electrode plat- ten as a sum of eigensolutions. each of vhich satisfies the
Itg is ncgligible for small Aa'.enumbers along the plate. Sine- homogeneous differential equations and boundary condi-
ilarlb, ott the ma i r surfaces of the composite plate in the tions ol the major surfaces for one of the three regions. i.e..
electrcirdd r-ett li e )luitdar\ conditions are the electroded composite. the unelectroded composite. and

I /1 u , I 'C 1 at x, h ' 12 J the bulk serniconductor. exac ll\. we cannot satist\ tie coil-

tiltuitN conditions across the interfaces between tie regions
13) exactl. Nc rtieless. the remaining contitnuit, conditions

1 ), Vii \k it I I lt f tItd I I . v, hich remain unchanged. 'Ilte across tie interfaces ina\ be satisfied approxtmatel\ b\ satis-

* )o1t 1, 11 11 ltttl (IC ll, :Jt lili . tipper electro de. f. inlgi the proper finIt of tie appropriate ,ariational prnci-
tcgur, 2 ai s t ,,,:hematic diagram of a cross scctuon pie ' of linear piczoelectricit\. in v, hich all CotiditiOll', are

,! tIt"c .iti n I Itici the filnt cnds at the edges of natural conditions and all that remains is an integral o\cr ai
fh, Clct? it1des 1L' h ,UItIdars conditions ott the major sur- itholnogericous forcing term that arises it the solution plus

Sfic', 0f 111e ctirt+),',litc plate in the electroded region. \w hich integrals over the interfaces, because all other ternt,, in that
'till couttins te lilt. ,ire cactl. the sante as in the previous form of' the \ariational principle vanish ott aCCOlnt1 of the
case I lovever. thc houndar\ cotditions on the tajor stir- equatiots and conditions satisfied b\ the solution functioins

tices oifthe utlcctri)ried plate. which no longer contains tile employed. Tile form of the variational principle of interest
fil. are Much simpler than in the previous case and in place here is gi\eti in Eq. (6.44) of Ref. I1. whtch we reproduce

, of 19) - 11 (1 %Ae ha\C here for tile configuration shown in Fig. 3 in the form'

.

,45

',4 '-' 6q d

I 

d
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(2Similarly, for the completely electroded composite'plate
driven by a voltage it has also been shown in Sec. III of Ref. 7

that the pure thickness-extensional resonant frequencies are
given by

Ss (,p )" 2 71)(1 + P/G ), (21)

where

FIG. 3. Diagram of a bounded region containing an internal surface of dis- 2
continuity. p k

*f 2

where S d' denotes the surface of discontinuity separating
region I from region 2, and S ' and S '" denote the por- 2 - 2 + c'u ta a 71s'h 0tan r/.h
tions of the rith surface on which natural- and constraint- (cos h t
type conditions, '' respectively, are prescribed. We note that - R - R '( I - c'p tan y('h ' tan /a iojh f), (22)
S,:' and S,"' refer to different portions of the surface for
different terms in the boundary sums depending on each ac- and

tual condition at a point. In (16) n4 " denotes the outwardly k2= (elj /1-cl e R =p'h '1p h (3
directed unit normal to the rnth surface, n(" denotes the unit 3  1 R (

normal to the surface of discontinuity directed from region I The difference between the resonant frequencies of pure
to region2t-'', .... u-'", and 7 '") denote the prescribed thickness-extensional vibrations of the composite plate with

tractions, charge. mechanical displacement, and electric po- and without a driving electrode, i.e., (. - ),.for the same
tential, respectively, for the mth surface, and the meaning of 71", is very important when trapping is present.
the remaining quantities in (16) is obvious from earlier dis- For later use in this work we now note from Eqs. (3.13)
cussion. The variational condition in (16) for the simplest and (3.14) of Ref. 7 that when there is no driving electrode
configuration, which is shown in Fig. 3, makes clear how to the solution for pure thickness vibrations takes the form
apply the variational condition to more complicated config- u(= (A' cos 71, x, + B I sin , x)e', (24)
urations such as shown in Figs. I and 2. Consequently, it is
not worthwhile writing the general variational equivalent of u= (A 'cos 71,x, + B'sin q,x,)e'", (25)

(16) for each configuration because it becomes too cumber- where from Eq. (3.8) of Ref. 7 we have
some and the actual useful condition can be obtained from %

16) for any configuration. Furthermore, in any given appli-
cation what is taken as a surface of discontinuity for applica- which resulted in Eq. (17) of this work. Similarly, when

tion of the ',ariational principle (16) is not clear from the there is a driving electrode and the composite plate is driven

figurc itself, but depends on what conditions the approxi- by a voltage Ve"", from Eqs. (3.26) of Ref. 7 the solution

mating functions satisfy. takes the form
i !- u{ (e J, Vx,lc 11h f) e",

III. PURE THICKNESS-EXTENSIONAL VIBRATIONS (e/', u+ [Cx, +K+ (Vx/h')Ie (27)
Since in all the cases the composite resonator will beer iwhere u is given in (24) and u', is still given by (25). This

operated at a frequency in the vicinity of one of the pure
thickness-extensional resonances of the composite plate, the solution resulted in Eq. (21) of this work.
pure thickness-extensional resonant frequencies of the com-
posite are of particular importance in this work. It is shown
in Sec. Ill of Ref. 7 [hat for the composite plate without a IV. STRAIGHT-CRESTED DISPERSION RELATIONS
driving elclrode hut with a ground electrode, the pure In this section we obtain the straight-crested dispersion
thickne,-cxiensi( ,nal resonant frequencies are given by relations for the composite plate. the thin diaphragm with-

W,, ,.Ip') y ,'( I R "/G"), (17) out the film, and the bulk semiconductor because these de-
termine the solution functions that are used in the variation-where q" iN the appropriate root of al condition (16). Since in this work we are considering strip

tan ht c'/ tan !par 7f,'h - 0, (18) electrodes as shov it in Figs. I and 2, we are interested in the

and straight-crested eigensolutions varying with x, in each re-

Cw gion. In the composite region we specifically treat propagat-
R ..... . (19) ing waves when the ground electrode is and the driving dec-

t: cos 71,'h ' cos:/iais' h ' t rode is not present because these are somewhat simpler (less

cumbersome) to treat than propagating waves between
shorted electrodes, and on account of the small piezoelectric

%urlb coupling and the small wa~enumbers of interest in the com-

" c' , posite region of the resonator, the dispersion relations and
.I )the associated solution for the case of shorted electrodes can

.', p/c',, p')' K a h /th ' (20) readily be obtained from those for the case considered here
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simply by employing the appropriate relations in Sec. III for where
the pure thickness solution in both cases exactly as in Ref. 7.

From the differential equations and boundary condi- a' =-4c4 Y- --- l + p .,
tions presented in Sec. II we see that for the straight-crested - - (ci, + c. ) '.,

waves varying along x,, which are of interest in this work, we =+

may take u, = 0and from Eqs. (1), (7),and (5) wehave the o= - c4.', ]+p . (45)
nontrivial differential equations

and the solution functions in (42) satisfy Eqs. (31) and (32)

c, u' + - (cJ, 4 c' )u',3 + CU 1 =p', (28) provided
44 , 11, + (C ( '4 -e )u.11 + c( C3133 + e6,C , -P U'

+ -,e,'-pu, A +ojA' =0, o.4 + A' =0. (46)

(29)

e u c =0, (30) o,, B - B +O'3, 0,',-. I " -(' ,, ' - ' B'1 -a 1 lB' O, -ra; +a B ', S

C1, U.11 + (C, ± c+C4 )u. , + c44 u1133 =P'i', (31) (47)

C cu'.II + (c', + c44 )u.I + c';u;., = p'i , (32)

where

and from Eqs. (9)-( 11), (3). (6), and (8), we see that the
boundary conditions for the unelectroded plate with a a = -c 1 I2 c'427 +p',
ground electrode take the form , ,7 - (c', + )?I,

a , = - 47" 2 - c'7 71 + p',0 2. (48) -

(7u A1 +c,' q , = 0 atx, = (33)
u/; + u =0, e' u' ' q, 0at x, h ( 134) Each ofthesefoursystems, Eqs. (43). (44). (46).and (47).

of two linear, homogeneous algebraic equations in two am-
Icu,. + C1UI., + q ,u,., - c " plitudes yields nontrivial solutions when the determinant of

Su', at x, =0. (35) the coefficients of the amplitudes vanishes. Both determi-
nants for the film are identical, as are both determinants for

44 1( c" Ku, 1  + u ). = h " ', the layer. Each of the two independent determinants is qua-

= u, - c = 0at x, = O (36) dratic in -q2, and to.Hence, for a given and &. each

c'U' + c' .' =0, determinant yields two independent , and ?; '

u], + uy = Oatx .... h (37) ,2) and each ? yields independent amplitude ratios
from either of the two equations leading to each of the four
determinants. Let us denote the eight sets of amplitude ratios

As in the case of pure thickness vibrations, in order to by
satisfy Eqs. (30). (34) , and (36) , we first take q, 'in the
form given in Eq. (26), which we note also satisfies the con- A 1 A ! " B 1' v B '" A,'= ,"A, ,
dition(r I = 0atx, = 0, andsubstituteintoEqs. (29), (33), B" =,"B', i=
and (35), to obtain

As a solution of the boundary conditions (34),, (39),
c4u ,11 + (, C44 ) U, .1'1  4-K ,' ,, p'.A , (38) (40), (35)2, (36),.,,and (37), we take
c,, u ., +(u( =0 at x, h (39)

u u -c',,u, -c',u' , I= h"p"u'u (A (e'"" + B"Ie "".)e' 'e.',

atx, = 0. (40) "

As a solution of Eqs. (28), (38), (31), and (32). we take e" (1 ,,A :,,,"... + v",B ,,e ,' ..... e . ,

m5 Iu - (4%'""' 1 Bf'e '"" )e''B'e"'. 141)

u - (,,'"' +B e ... ) e"e (42) u' , (4 ' e"' + BY'e ,

in which the subscripts a.b take the values I and 3 but skip 2.
The solution functions in (41 ) satisfy Eqs. (28) and (38) u; , (p"' 4 Ce' + v""B 'e '. )ee . (50)
provided ,,,

Substituting from Eqs. (50) into the boundary conditions
7A 4 + or 4A 0 () Y0 A cU, .4 1)0, (43) (34), (39). (40). (35). (36),. and (37) and em ploying

a,'B, aIB? 0. B(YBi + a',,B 0. (44) Eqs. (49), forh" 0 we obtain
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7z,,

[.. + Ci ! B C"(c', ,,v) B- (c",7,)e 1,1,,,, 0,

2 [A l B i'- .4v -4-)e) 0,'",-' 1 1A '.4 ( ,,t + ) B .i (C 1,, .... - A c, 71_ rC (]._. Z. - B ,"[' c ' ,,"!-" - c',,77_ 0,

<.A• '.. ' ( 1 ' + i,'" )" '- '" Y'B ' " ~ rf ) ' s-O

A BI .4 
"
-

1 " . ,,)e " , B " , . 0) (. (51)

" Equatiins (51 ( constitute a s ,stem of eight linear homogen- equations are identical with those given in (31) and (32)"eos algcbraic cquations in .A ". B ". A and B,', ,hich but with carets over the variables, and which for clarit, we" , teld nontri; al solutions when lhe determinant of the coetfi- w rite here in the form
* dcints %anishes For a gi~en geometry and (.-) the resulting '

equation ,iclds a rn infinite num ber of roots ,., each of which cU ( - c(52 ) -
-. determincs a point oI the dispersion spectrum and yields ('44.4 (c - c4 ) I. - c\ - / (52) AC 1

amplitude ratios from any seven of the eight equations in From (6) and (15) with i, = 0 the boundary conditions' Eqs. (51 ). Calculation, are performed by first selecting val- take the form
ticS ofc andi ,. which enable the determination of the 7/,: and -rq, from the tx o independent 2 . 2 determinants obtained i at 0 atd v, it (53)
From Eqs (43) or (44) and Eqs. (46) or (47). respectively.
T hese ',aliws of' 71, anid 71,, enable the determination of the 02AMHz
amplitude ratios p •i 1./C'. and i" from either of the equa-
tions in Eqs. (43). (44), (46), and (47), respectively. Then
all quantities in the determinant obtained from Eqs. ( 51 ) are 3oo : .

known and the resulting determinantal equation either is or
is not satistied. If it is satisfied the values of o and $ selected
are correct and constitute a point on the dispersion curves. If
not, change either ,,, or . and repeat the calculation until theboundary condition determinantal equation is satisfied. "

The pertinent dispersion cures for the aluminum-ni-
tride film on the gallium-arsenide layer composite plate 200
have been calculated and are shown in Fig. 4. We do notdistinguish between the electroded film with shorted elec- 

N*.
trodes and the unelectroded film in the figure. This is done in
great detail in Ref. 7. Furthermore, when required, the dif-
ference between the two can be calculated from (o" .- " )
given in Sec. Ill. The dispersion curves are for a film thick- J,
less of 7 /imn and a diaphragm thickness of 14pro. 1. 0

* In the region of the bulk semiconductor the solutiotn is 
dconsiderabl) simpler than in the composite region of the res-

onator because there is only one section with traction-free
upper and lower surfaces. However, although this problem -
can be simplified even further by placing the coordinate svs- CL, -
ten in the center of the plate, it is not convenient for us to do I_ _______
this in this work because the solutions in each region are put 50 0 50 100 ISOtogether in the .ariational equation (16) when the solution Im4 (10 M- 

I ) Regto the forced vibration problem is obtained in the next sec- 1t(i 4 )ipersin cures for the composite region consisting ofan alumi-tion. In the region of the bulk semiconductor the differential num nitride itm on a galtiun arsenide layer.
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%

C44 ( . +i.,)=0atx,=0andx,=-- • (54) W_.-M.

As a solution of (52) consider

= ,e"" + Be 'I )e"et, (55) 30 %

which satisfies (52) provided

o-",A +A =0, a + 3 =0, (56)

or or-',' =0, - orB ', + B' =0, (57) 1.

whereo ,u and a , are given in (48). Each of the two
systems of linear homogeneous algebraic equations in two
amplitudes yields nontrivial solutions when the determinant
of the coefficients of the amplitudes vanishes. Both determi-
nants are identical and, in fact, are the same as the earlier
determinants for the layer. Thus, for a given and ,j each 100
determinant yields two independent ri, ( 'f, ') and each
1'" yields amplitude ratios from each system of linear alge- 100

braic equations, i.e., (56) and (57). Hence, there are four
amplitude ratios, which we denote by

.4 1 1 ,A ;',. B ' v " B ( 5 8 ) , 0 5 l ; 0
100 50 0 50 100 150 ,*

in which the i" and i" arc the same as in (49). Ir{ (I03 m -
1
)  Ret

As a solution of the boundar conditions (53) and (54), ,imR %

%e take FI(. 5. Diprwn cur~ ", for the galhunh-arsenide la er ithoui the thin
filn

~%A
t 4 tions are performed as in the case of the composite region .

B ,., " with the given attendant reduction resulting from the elimi-

Substfiuting fro, ( 59) ino the boundary conditions (53) nation of the film. %

and (54.t. we obtain The pertinent dispersion curves for a 14-tim-thick gal- .r
lium-arsenide diaphragm have been calculated and are

A, 4 /i" ' '" i"//,, ) shown in Fig. 5. The lowest 17 real dispersion curves for the % %

bulk gallium-arsenide plate have been calculated and are ..0"%
B f '(e ,, (I, 0,, ) ] - shown in dimensionless form in Fig. 6. For the fundamental 4e

[A B 7/Z7) 07_- ,, f.

2(tIf " ag "~i .... f lot i a-nd' B,, ... hic v"It-l oi. ti-{-.

• . ,!7 ("j o "

o. (60)

qit.tions (6() constilult ;stm'nl offiour linear nlligen- % -

% ial %ohtllionts whcll the detcl nlnlallt of the coefficients all- '

ishe",. At titls point it ShlIld he noted that if 4 " and B j" a rI "%o%

Wri!lten a, complex conjugates. thes \tein can he simplifd %

into solutimis respectcl. \ SNm fictil and antivmnctric 2 . ,, ,

hbitl tl it' ctt rlinc ol It at c. i ic h ma. \ e treated sepa-

iflttelS. l l'.,ti. this is no ,,i. t'it rly coniivenicllt f t11 us
hcCatUS.' we itced ot 1 tle S\ tinieric t d an tlisvinnlet tic so-. , , - + * -. ....

0I(0 4C 60 so .

lutiolls and '.ke ha\t' allcady treated fite Composite plate, 0o 0 .-

which progriins are icadil\ t modified for this cakt Clearly. t-t% h t)isp'rs:..ncur'ces fq tcgalhum .rstiidt aft'r itht dim nti,

this Molnlion htilds ft r tilte regitoi oflihe thin diaphragm with- .um, lc' frtequta n1 't tliil c.d \.1t h repect i the firt hiknes .hear fre.

out the film pr oi(dl only t hat it is replaced hy h' Calcula- quenc
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essentially thickness-extensional resonance for the compos- wafer thicknesses up to 8 mils for which there are 30 real
ite dimensions mentioned (around 132 MHz), this number dispersion curves for a frequency of 132 MHz. However, we .0
of dispersion curves is for a gallium-arsenide wafer thick- do not bother to show the figure for more than 17 in this %
ness of about 5 mils. In this work we perform calculations for work.

V. FORCED VIBRATIONS OF COMPOSITE RESONATOR%
In this section we determine the essentially thickness-extensional vibrations driven by the application of a steady-state 41%

driving voltage to the strip electrodes on the surfaces of the piezoelectric film of the composite resonator shown in Figs. 1 and
2. Since we include radiation into the bulk semiconductor, we can use the solution to calculate the Q at resonance of the mode
resulting from radiation into the bulk semiconductor.

- In accordance with the earlier discussion we take the approximate solution in the form 1v

k F~l - I a'qi()ua c(,~h f =5K31

u- K u ("), u. - K"u."", = "'"u. , (61)
-1 , I y

-, where Ft, n, and h denote the number of branches of the dispersion curves included in the electroded composite, unelectroded %

composite or diaphragm and bulk semiconductor, respectively, which are given in Figs. 4-6. The eigensolution functions %
'([)u", ", " denote the solution functions that satisfy the homogeneous differential equations and the

boundary conditions on the major surfaces for each of the respective regions and which were presented in Sec. IV and yield the 1

dispersion curves shown in Figs. 4-6. At this point we note that since the driving voltage V is applied over the region
- 1X, < 1, the eigensolution functions in the electroded region of the composite resonator will be symmetric about x, = 0

and, consequently, the factor e' in (50) will be replaced by (e'," + e ' ")/2 in the expressions for u, and u., and (e"'

-e ''/2iin theexpressions foru 'and u, respectively, in (61 )1.2 Since the solution functions i,", i"',u." u"" , and
satisfy the homogeneous differential equations and boundary conditions on the major surfaces for each of the respective

regions and the solution is symmetric aboutx = 0, when (61 ) will be substituted in (16) all that will remain may be written in
the appropriate form

h' e X, e""6u, dx, dx, (T1 , 6£, + ,Tj1 bQ) dx, .

0+ nf [(t, T( ) dT') -'T'6u)

+ -(T, T -,,(6 ', u?) + (i - uT)(6T,, TT,,) + (u , + '

T+ T i,+ u' +F, - u,)6 , )+6,, +6 l,) + (ii3 - u', )(6T,, + 6T'13,, dx,"'

+ [(T;, -T, )(u;, + b ) + (F,, - T;,)(u a +±5uf)

+ (uT - T, )(T, +6T ) + (u', -- )(6T, + -T,) -d dxT =0, (62)

for the case when trapping is not present and the film extends over the entire diaphragm, as shown in Fig. 1. When the film
ends at the edges of the electrodes, as shown in Fig. 2, the fifth integral in (62) is not present and the second integral is replaced
by

f- (T 1, 5bi %+7 6u), dx,. (63)

When trapping is present with a notch under the electroded region, as shown in Fig. 7, the fourth integral is taken from -
to 0 (instead of - h' to 0) and there is an additional term,

f+ (i+', Su, + ., &u\,):,. dx,, (64)
'p'

in Eq. (62).
Since thesolution functions in (61) are fixed, only theK '". K ". and K" 'are varied when (61) is substituted into (62).

Accordingly, substituting from (61 ) into (62), employing (3), (6). and (50) with the appropriate aforementioned replace-
ment in (61)2 and (59), and performing the integrations, we obtain an equation of the form
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,.

S5K (0) -""' + 6k 6tlk "K'd' + -)6KK'a, + M ())K ()ay
+. + (6kK K(", + '"TK'"'K'bf,,) + K (6K"K(')b,,, +K"'K "'b,, 0, (65)) =0

)1a -I (65)
where the expressions for af,, a_., a 7,;, boa, b,,r , and F'9) are given by

-" - 7I )" ' h,,: +g',,, + g(7,,, - ,,,--"' + . ,' ~

- 2 2 )

-/,, =< )- Z, Y3 -1- -- 1;

= g rl.. [- 9 .. ',. ,, g( --4--(, - , ,h , , g(r;" - in;A" );'" 'h]e"T

2 0 y / 2 + 9 7,,rh'", 0 + , ,,

+g( - - - - g, ,, + g(,,,,, +f(l,, h h -" ,, -" , h-+-g( -if' -- 7if ) ,,I~,,,4 J c'', . ...i +

+- g(oy", )', , h 'ri;, -" ) ,h e (

[ 0 1" .,... ,+ 77" A,+".. -T

2.,,,,,+',g f,, r / ', )1' + r' B , + Illy, 7 I+- g 7,- -,,, _, + g( - It', -e",,) 'h "

g ,,',, "/z e,

P 01( "... + 711,, I ... + g( I.. - ,,l h ... + g( z](,, - ]'.) , '

4 e
[g( -,,, ,1" ,, ± '( " ,,+ e",,A g( , " -, ,

2, 2,, [++

+ g~v',, - yt'_:,,); ..... I- , q A 1 /'.) +1( - 7 ,1, , uf'p' 1'/")

12 2

2 2 p(7
g(iLly,,-,',;, ) , _h_,,_ ' 9 --. 2

.. ,( -ix" + g( , 1)", (68)

4_(i l ,4 + , / ,, -..., A<",

+ BI

g( i, fj (66)

C h, 4- (67

In -, ,, ,, ,, (66) and 2[g %e,, , ave emp, the definit

1 h4ce c r~h f g (t o", - I ( o, l.,), . , , I , ,, , ) + ( , , i

-- ,, A l, -- )-. ( 6 7 )

24 f Ph1 Vo1 6 71S t ie 226

c]""

fra i Iln (66)pat cofiuato i(67)4 c,% hav _ em Boe th d70)f n

N - _
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and r., ',, ,, are obtained by replacing f with s in 5occ.,

(70). The expressions for the unelectroded composite or dia- '

phragm and bulk semiconductor regions, respectively, i.e., 40 0.

~~or .... i, , i , , l,  o ', o ,, and r.. . , ,.. /'

r ',' are obtained by replacing the quantities with the bars in ''

(70) by the associated quantities without bars for the unelec- 2 C

troded composite or diaphragm or with carets for the bulk
semiconductor. Furthermore, in (66) we have employed the . 'K':

additional definitions j_  \ 2>..... . . '.
01, - ,, 4 , 5, -*,,., K-

h "' A i;;' + r ,A 7,, - , I,' + fl13A K

h,, ; ',, A ,, - 1'B t,, ± +  (/A" h,1 1IG. 9. Quality factor ,, afer thickiess when trapping IS not preent tot

S. . ,- .+ r, , ;,B- , -& o' a + ,B ," 1 fie com posite resonator conligurat ion sho ,& n in Fig. I

h "" B' B- +I 'oB 1 ]p l 1 e./t" - '" "_.; '' -" " '- ' ::

(71) K= dt Re &c f pt, dx,, '.
and the h s for the other regions are obtained by replacing the f

quantities in (71) by the appropriate quantities associated U dt - Re dx, ± [c, u

with each region. Since the variations in (65) are arbitrary, F, 2 (2

we obtain the inhonmogeneous linear algebraic equations for ."2"

the K"', K". and K' in the form

K' \ ' '-L,, ' ,, .=... '. i3  l... . cU(.,, + U,, ),, z + u, , . -

K'"' 1/1" )*dxJ
KI K I i,

E, 2) dt 'I, Rel7",ix(74
V* u YK"1,,, K A b' ., 0. fJi2L f"

in which Tis the period of the vibration and we have taken
1 . a, the liberty of writing the integrals in (74), , over discontin-

, A" ' K , ,- O. 1..... (72) uous functions to achieve brevity. For a given geometry and
Y- K i V K b (72 mode, resonance is determined by obtaining Q over a (nar-

w hicli cOttstittitci; n 0 itthomogcticots lincar algebraic row) range of frequencies and finding the frequency for
equatios fcr ik' .n" . and ik- which Q is a maximum.

In performing the calculations we have found that it is

imperative that all radiating plate waves in the thick region

VI. QUALITY FACTOR RESULTING FROM RADIATION of the gallium-arsenide be included in order to achic c accu-
In thi,, sect it, w c .aheilate thle quality fictor due to racy. Since at a given frequency the number of radiating

t f hrc waves in a plate goes up significantlN with thickness. we have
caIeLl tot ino tile huilk WpneMicottLr for each t thee considered gallium-arsenide ,afers no thicker than 8 mils at

a frequency around 132 MHz. for which there are 30 radiat-
SOILutioit nla\ be ohtajucd from thle analysts III Sec. V at anN
s drivtitg a brequettx oItich allm the rt,ineat persi ing plate waves. Results are presented for wafer thicknessesdriving f'requeIIn fo~r \khich all tile pertinent dispersion""

curves arc a ailahle, it this work we are intercsted in the

solution oil., at tI hi fundautntal essentially thickiness-exten-

sional resonance for each of the three configurations. It is

clear from experience'" ''that under these circumstances we

teed consider only the cssentially thickness-extensional I

branch in the composite region (either electroded or not) of .... ,.

the resonator, which is the curve labeled I in Fig. 4. How- '"

ever, in the thin region of Ihe semiconductor without the film

and the bulk semiconductor all pertinent dispersion curves
shown in the respective Figs. 5 and 6 must be included to

obtain accuracy. The use of only one branch for the compos-

ite region means that we always have n -- I and it I for the ... ,.

configuration shown in Figs. I and 7 but not for the configu- .

ration shown in Fig. 2. for which all curves shown in Fig. 5 * , , )
must be included.

As usual, the qualit factor Q is defined by .. ,

Q (K f U)/E", (73) 1:i Qualm, factor ss %afer thickness %hen trapping is not present for

where (fit cotllposi resonator conufiguration sho, n in Fig 2
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100000.

610000 -

A A .4 J A
60000. Id ~~V vX

.~pF tIC. 12 T)pical thiknes\Ldisplacemnent alonsg the surface of the composite
40000- resoator I-or the contfigu ran on %ho& tt in Fig. 2.

20000. trapping wkas itiduced inl the fundamental mode by notching

the diaphragm under the electrode as shown in Fig. 7. As
________________________________expected, the Q clue to radiation can be made as high as we0 wish simply h extending the lateral dimensions of the film0 50 100 150 200

d-i (,Um) and diaphragm. Figure 10 gives Q as a function of (d - 1),
tRo1. Qiatt. facto[ %s distance fioni edj of etectrode to edge Ofla i.e., the distance from the edge of the electrode to the edge of.N

phragtt %% hent trappinsg presen~t for the coinipo)sitc.sonator coiigtatiottI the diaphragm. It canl he seen from the figure that Q in-
shown Ill te . the kkdth of ttte ect irodec 21 %aries, froin 580 to 420 1 mis. creases xe ry rapidly with ( d -- 1) and at d -- 21, Q = 70 000I

for this geomet ry. For these calculations the wafer thickness
rangng rom4 t 8 ilsbecuse hisis onsderd t be was 6 mils. Even when trapping is present the Q is a varying

raning fo t oia 8a ge m ls b thue thiuls psc nsdere tor be function of wafer thickness, but the range of the variation is
withn te pactcalrang. Al te rsuls prsened rc ora less thant 1/10 of that when trapping is not present, which is

film thickness of 7plm and a diaphragm ihickness of 14
/n nopfitrsmiceteQwt rpin ss uhhge

and thle laiteral dimensions of each configuration were ad- ta h ihu rpig nitrrtn h oeon
lusted slightly to maintain the same resonant frequency for information it should be remembered that the high Q 's cal-
computational coinvenienice. Sitnce thle calculated Q is a very cuadshldbhiertnteatalQsbcuete

rapdlyvaringfuntioi o th waer hicnes, clcuatins material Q and thle Q due to radiation into the air are not
had to) be performed for very small increments in thickness, included. The results discussed above mean that in order to

i~e. I imin rde to et ll he eak and~'aley inthe obtain reasonably high Q w~hen trapping is not present. for a
interval, given wafer thickness the thicknesses~ of the film and dia-

Ili thle absence of trapping, for the case shown inl Fig. I phragmi must be ,er preciscl5 selected.
N thIe results are plot ted Ii Fig. 8. which shows, thle aforemien- Since all conditions are nat ural cotndit ions in the ar-

iond sharp %.ariat ion Ii Q withi wafter thickness,. It cart he ational cotndititort in ( 62 ), the approxi mate solution does not
seen from the figure that 1he highest Q obtained] is about exrslmtcthmoehaetteitrfesuesits
475(1and thle l stis about 10. and there arc about It) peaks exc.Cneunly h xett.hihtecluae

for, Qhcit's b tw c 40 a d M tas ci F ilic let'i ca'5 mode shape matches at the ;nterfaces giv es anl indication of

SI hve 'sof bou 70 an 200. espcti. ey. orte cSe the accuracyN of thle approximate solut ion obtained. Typical
shown in Fig. 2. the results arc plotted Ii Fig. 9. w~hich show" plots oif the u ,-displacemertt field, wvhich is thie large one for

~ aia 'it uQ it waert icitsssiila t Fg.& utin tile essentialN thickness-extensional modes considered here,
thle figure t hat tile hig-hest Q obtained is about 15 0(X) and the t'.Ian12repci l.Itanbsenfothfgus

lowet Qis aout200.Calui~iion wer peformd well that then i4-displacemettti field matches quite well at the inter-
faces. Consequently. we can conclude that the approximate
solution obtained is quite accurate.
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A PERTURBATION CALCULATION OF THE QUALITY FACTOR OF THE PIEZOELECTRIC THIN FILM ON
SEMICONDUCTOR COMPOSITE RESONATOR DUE TO RADIATION INTO THE WAFER

D.V. Shick and H.F. Tiersten

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

1. Introduction where w and u) are the unperturbed and perturbed

In a recent analysis
I
'' of the piezoelectric eigenfrequencies, respectively, and

thin film on semiconductor composite resonator H, n.(Tig - -uT..)dS, (2)
vibrating in an essentially thickness-extensional S
mode it was shown that the quality factor (Q) due
to radiation into the bulk semiconductor is a very where n. denotes the outwardly directed unit normal

sharply varying function of the ratio of the to the surface S of the resonator and the normal-
thickness of the resonator to that of the film if ized displacement field g is defined by
trapping is not present, but not if trapping is " U u

, L. . V 3
present. The treatment employs a very accurate g - u IN N2 J ouu'dV, (3)

but extremely cumbersome variational approximation j V

technique and is restricted to the case of strip
electrodes and diaphragms, in which u ' denotes the purely real mechanical

displacement field associated with the mode of
In this work a perturbation analysis of the Q due interest in the composite resonator and T'. denotes
to radiation into the semiconductor wafer is pre- the associated stress tensor. A cross-sec~lon of

sented, which is considerably less cumbersome to the composite resonator attached to the semicon-
use than the earlier variational treatment and is ductor wafer is shown in Fig.l. A schematic plan
not restricted to the case of strip electrodes and view of the assumed composite resonator is shown
diaphragms. In the treatment the resonant mode of in Fig.2 along with the assumed approximate edge

interest is determined from the equation for trans- condition (u3 - 0 ). Thus, for the problem at hand
versely varying essentially thickness-extensional
vesoy3 vri esetal the surface S in (2) denotes the surface alongmodes in composite resonators and simple approxi- which the semiconductor portion of the composite

mate but very accurate conditions at the 
edges of

the diaphragm. This resonant mode is then used to resonator abuts the wafer. The calculated mode in

determine the near field radiation into the semi- the composite resonator shown in Fig. 2 results inderections heandadisplacementstuothat arehapplied

conductor wafer by means of a variational approxi- tractions tL and displacements uL Lhat are applied

nprocedure Of course, as in the earlier to the wafer along the surface at which it abutsmarion poeue.O ore si h ale

work
1
,2a the resonator as shown in Fig.3. These tractions

Sall radiating plate waves in the wafer are tl and displacements U then cause radiation fieldsincluded in order to achieve accuracy. Finally,II

the mode in the composite resonator and the radia- in the wafer, which are calculated by means of a 6

tion field in the wafer are employed in a perturba- very accurate variational approximation procedure
5 These radiation fields in the wafer produce a

rion integral to calculate the Q. Calculations reaction back on the composite resonator along S.

are performed for the cases of rectangular elec- The stresses T.. and displacements u, in (2) denote
trodes and diaphragms and scrip electrodes and .3

diaphragms both when trapping is and is not this back reaction field.

present. For the case of strip electrodes and
diaphragms the calculated results are shown to be Since the radiating fields in the wafer are chosen

in good agreement with the earlier more cumbersome to satisfy the differential equations in and

1,2 boundary conditions on the major surfaces of the

direct calculations .wafer exactly, all that remains of the appropriate
variational principle in which all conditions are

2. Perturbation Procedure natural conditions is given by

Since the coupling is small in the piezoelectric
thin film, we need consider only the elastic por- I ( klk'6G3d s + J ) dS O "  (4)
tion of the equation for the first perturbation of J nk (3ntk S k
the eigenfrequency, which may be written in the SN S

form
5

%./ 2w,, , -w - ,
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In (4) t and u are known from the resonant eigen- where the superscripts f and s denote the film

solution T -, u" and ui and 
T
kL are found from the and semiconductor diaphragm, respectively, and ou3

expressions for the solution field radiating into represents the thickness dependence only and is
the Wafer. At this point we note that the reaction givefn fin fin
a T

kI from the radiating field is complex, the ou -A cos Tf x +B sin fx21 o3 3 fnx3 3 'fnx3'
real part of which yields a small change in fre- h

f

quency when substituted in (2), which is negligible 0 < X3 < h

and not of interest here, and the imaginary part of usn sln o +sln o
which yields the attenuation due to radiation into o 3 -A 3  cos " nx 3 ) sin x

the wafer from (2) which is sought here. From the
well-known relation w 

w
- iu /2Q and (1), we obtain 0 > x3 >-h , (8

2 and the amplitudes are given in Eqs. (5. 20) of
i Ref.3. Since only the semiconductor diaphragm

abuts the wafer as shown in Fig.l only the variabli
3. Transversely Varying Thickness-Extensional in the semiconductor are relevant here. However,

Modes in order to calculate the tractions ti and displac(

As noted in Sec.2, a plan view for the determina- ments us that the mode in the composite resonator

tion of the mode of interest in the composite exerts on the wafer as shown in Fig.3, we need the
resonator is shown in Fig.2, in which the - denotes

the electroded region, the S,the side region, the associated displacement fields us and u2 in the

T, the top (and bottom) region and the C, the semiconductor diaphragm in addition to us. These
corner regions. This notation is essential for the n

treatment of the trapped modes, but is not needed functions differ for the different E and associ-

for the untrapped modes because in the untrapped ated 0 3n, which occur in the different regions for

case the edges of the electrodes are relatively the trapped case but not for the untrapped case.
unimportant. It has been shown in Sec.5 of Ref.3 n
that the homogeneous equation governing the essen- Since the f has the same functional form over the

tally thickness-extensional modes may be written entire composite resonator in the untrapped case a!

in the to-n it has over the elecrroded region in the trapped

case, we write u and u, for this functional form
/2 f n ,- n fp . f fn 8

+ C ~ f- (6) fr only .It has been shown in Sec.V of Ref.)
'n - 2 / 33 fn that for

Cx I axfn w
f - co os vx e (9)

where n denotes the order of the pure thickness

mode in the composite resonator, both the super- which is the above mentioned fn

script and subscript f denote the film and Zn = a -tfn

En in an electroded regionwhile 7f  
fn in an u1  3) sin t cos ' e

unelectroded region. Furthermore, it has also been
s s - - iwt

shown in Sec.V of Ref.3 that at an interface between - (x 3 ) cos x sin vx2 e , (10)
electroded and unelectroded regions we have the

continuity o fn and dfn /dn, where d/dn denotes tte where
normal derivative. Within the anoroximation made

s s1 o s2. so0 sI
in obtaining Eq.(6) it may readily be shown 6-8 that A sin T +A sin x %x +B cos othat 1 sn x3  T~ 3  1 co x3

for either completely free or completely fixed s 0 _' ,
conditions (here completely fixed) along the edges + B lsin x , , + (11)
of the diaphrs@n shwn in Fig. 2, the appropriatefn tand 

Ks and the amplitudes are given in (4.30) and
condition is fn -0. The expression for the coeffi- (4.26), respectively, of Ref.3.
cient Mn, which is very important because its sign

indicates whether trapping is or is not present in As already noted,in the untra~ped case for the

the flat composite plate configuration, is given in fundamental mode for any n, f is given by

Eq.(4.44) along with (4.41), (4.42), (4.37), (4.38) fn - ift

and (4.33) of Ref.3 gnd clearly is much too cumber- Cos xl Cos vx, e , (12)

some to present here'. where from the edge conditions 8 
for the mode of

it has been shown in Sec.V of Ref.3 that the dom- interest

inanc u -displacement field accompanying the mode - ?/2d , v - n/5.e , (13)

is given by with which the unperturbed resonant frequency.
fn . fn n sn sn n 8

u3  03 f (xl1 x 2,t), u3 =0 3 f(x 1,x2,t), (7) may be obtained from

37 8- 1986 ULTRASONICS SYMPOSIUM

* -- ~ W %e.t 0 C~~W*,~ .? pP~*.C . ~ * ~ ht '** h *%



f 2 -f -2 + M (14) - at x 0 and x s(19)
"C33 f n 3

In the trapped case the expressions for fn in each In considering waves radiating in the +x -direction,
of the respective regions shown in Fig.2 are given we8 fs a
f .S .s .s8 e first note that since _v is small ,TI is an

byns -(x L-) order of magnitude smaller than TI and us, and u2

7 - - SE c .E5osX f .(Ee1f (Ee is an order of magnitude smaller than and as

-(x Hence, u, the x2-differential equation and 32 are
E+ ) Cos qVua o a a

negligible for radiation in the x -direction. OfV -(x-b) V (x -b) -

f (E e - 4-ETe 2 cos Ix, course, equivale- statements hold for radiation

-'(xl)-v(x-b) -"(xl'1)+v(x2"b) in the x2-direction since is small. Accordingly,
fnC = -1 C If =E=e + Ze for waves with slowly varying crests and propagat-

2  C r(X-L)4(x "b) ing in the +-xdirection in the near field, wee (X l Z)-v(x -b ', -(X 2 +v~ , b

+E e E4e (15) write

- 5- - (" .+(m )
where I and v are determined from the lowest roots u = cos vx ame 3

of the transcendental equations m1

- 7 Xa -Z i.( e2 ( - ) . =mx -(x -d) ~
t U e- 2(d-)) + r de )e e a- 1,3, (20)

-2v(w-.b) for either the untrapped case or the electroded
(an Q e region for the trapped case and we do not bothertan -£ V; (16)

1- e 2v(w-b) ' to write the solution for any other regions for the
trapped case. The 1(m) ( , -( and C(m) are

with the aid of (6.7) of Ref.3. All amplitude ds a

coefficients in (15) are known in terms of E from 8 b 3

the relations usual way 8 2 3 .  From this solution the lowest 17
real dispersion curves for the bulk gallium-

S E C "- ET E co . s'D arsenide plate have been calculated and are shownE --d- * V = 2-wb
= 1 - e - ) = - ei-n dimensionless form in Fig.4. For the fundamental

essentially thickness-extensional resonance of :he
C E cos Ek cos Vb com.posite resonator consisting of a 7 4m thick
E " -2V(W-D)) aluminum-nitride film on a 14 Lm thick gallium-

1 (- e2 )(l- e arsenide diaphragm, which is around 132 MHz, this
C -2v(w-b) C C e-2(d-) EC number of dispersion curves is for a gallium-
E2 1-' E3 1 ' arsenide wafer thickness of about 5 mils. In this

EC -2(d-!)-2v(w-b) C work we perform calculations for wafer thicknesses
. = e -. (17) up to 8 mils for which there are 30 real dispersion

curves for a frequency of 132 MHz. However, we do

As already noted, u and u2 are known from in not bother to show the figure for more than 17.

the electroded region from the relations (10) and Similarly, for waves with slowly varying crests in
(11) and for the other regions equivalent rela- the -direction and propagating in the +x -

8 2
tions which are not shown here are employed direction in the near field, we have

4. Var'able-Crested Waves in Wafer 2 i-(m)
as -Co , Z(m)(+m) e

In this section we obtain the solution functions c
for the near field waves with slowly varying crests m.1

and the associated dispersion relations. The . Ti X .(x(w)_b(m)e 3 1 -3)e,3, (21e)~
stress equations of motion and the linear elastic 4- 2 i t (21)
constitutive equations for the semiconductor wafer b

may be written in the tensor form8'10'1 1  for the same types of regions as in the previous
case. From this solution we obtain the propagating

Ts s.s (s s s dispersion curves for near field radiating waves
ij,i = 3uj , i j kLk, L (18) in the x -direction. The dispersion curves are

2
where the notation is conventional, and we note just like those in Fig.4.
that the equations are too cumbersome to write out
in detail. Prom either Figs.1 or 3 we see that 5. Variational Analysis of Radiation into Wafer
the boundary conditions on the major surfaces of
the semiconducting plate may be written in the In this section we determine the waves radiating
form
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4

into the semicondu' tor wafer due to the tractions In a similar way for radiation in the x 2direcL.on,
and displacements resulting from the mode in the weoti82

composite resonator by means of a variational
approximation procedure, as indicated in Sec.2.
Since the near radiation fields emanate from the
edges of the diaphragm, which are normal to xI and C A T6 ' .. .

xa, respectively, we may determine the near fields y1

radiating in the xI - and x 2 -directions separately. Equations (25) and (26) each constitute . inhomo-

Accordingly, for radiation in the x1 -direction, geneous linear algebraic equations for the n un-

obtain knowns () from (25) and the N unknowns K..

w -h from (26), respectively. When the :

dx (TiIIU 5a T1 36u3)~ -id dx3  iKj') have been determined, the near field rac~.-

-w 1ting solution is known
8
.

+ T 3 x d  6. Quality Factor Resulting from Radiation
s6 +Ts )bas"" d."s l 3 ( 13 d

s In this section we calculate the Q due to rac:a-
0 tion into the semiconductor wafer from the

(as s 3- s0 (22) analyses presented in the previous sections.
I 1 g1)T 1 1 " 3513 x, d *- ' Accordingly, from Secs.3-5 we see Chat the per-

_n turbation integral takes the form 8

where, as already indicated, the forcing terms w o
resulting from the mode in the composite resonator H - j dxF Sgss ds -. s

areT and gs For radiation in the x,-direction - .5  
1 1 X 1 3'13

13 1 -W _h
s

we simply interchange subscripts I and 2 and d 0
rep lace w by d . - S s jdx3  . F d ;.F I

•1 - g)x ._d  -I , , .-l[

For radiation in the x1 -direction we now e:-;and -hS

the solution in the wafer as a su.a of waves 7zh + T ) - s

slowly varying crests in the x,-direction and .... X,. 3 23

propagating in the x -direction, which were dis-
cussed in Sec.4 and are given in (20). Thus Substituting the imaginary parts of the olu::'.:ns

determined in Sec.5 into (27), we obtair.

N= Y (o')-s(&) w o "u ,(22)=, x L. . 3  .
a S Ua H. L d, u7

a-1 L WLL '

where each of the as(o) are of the form given in s
a , .(a)-S (or)Ts 1]x. d, ,

+ -..z(-K a .T3(20), N denotes the number of branches of the dis- S UI l lcd

persion curves required for the N propagating d o "

plate waves. Since the ua are fixed, only the + j -r..ft, u,

K(0) are varied when (23) is substituted into (22). -d -h
s y-I

s
Accordingly, substituting from (Z3) into (-2), ( )- T ('Y )T dxlS
employing (18)2 and performing the integrations, U 2  2j

8
we obtain an equation of the form which may now be used to calculate the Q from 5).

(a ). S -1  )Of course, as in the earlier work
l
' all radiating

K (24]) - plate waves in the thick region of the gallium-A-I cL arsenide are included to achieve accuracy. Sincea'

at a given frequency the number of radiating waveswhee he xpesion fr S S'.
where the expressions for AS and C, are too in a plate goes up significantly with thickness.

when trapping is not present we have considereo
lengthy to present here. Since the variations in gallium-arsenide wafers no thicker than 8 mils at

(24) are arbitrary, we obtain the inhomogeneous a frequency around 132 MHz, for which there are

linear algebraic equations for the K in the form 30 radiating place waves. Results are prosentod
for wafer thicknesses ranging from 4 mils to

K ) - IS2 8 mils because this is considered co be within "lie
S a a'
5r. or,
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practical range. For the untrapped case the increases very rapidly with (d- L) and for the

results presented are for a film thickness of same value of (d- L) the Q is about twice as large

7 microns and a diaphragm thickness of 14 microns. in the strip case as in the rectangular case. If

Both strip diaphragms 600 microns wide and square a film thickness of, say, 8 microns had been

diaphragms with lateral dimensions of 600 microns employed, the required (d- L) for good Q would be

x 600 microns were considered. The strips ale 2  much larger .

treated for comparison with the earlier work I .

For the trapped case the results presented are Acknowledgements
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A PERTURBATION CALCULATION OF THE QUALITY FACTOR OF THE

PIEZOELECTRIC THIN FILM ON SEMICONDUCTOR COMPOSITE
RESONATOR RESULTING FROM RADIATION INTO THE WAFER

D.V. Shick and H.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

ABSTRACT

pp In a variational analysis of the vibrations of the piezoelectric
pp

thin film on semiconductor composite resonator it was shown that the

quality factor (Q) due to radiation into the semiconductor wafer is a

sharply varying function of the ratio of the thickness of the resonator

to that of the film if trapping is not present, but not if trapping

is present. The treatment is very cumbersome to use and is restricted

to the case of strip electrodes and diaphragms. In this work a

perturbation procedure for the calculation of the Q due to radiation

into the wafer is presented, which is considerably less cumbersome to

use than the earlier treatment and is not restricted to the case of

strip electrodes and diaphragms. The resonant mode of interest is

determined from an equation for transversely varying thickness modes

in composite resonators and simple approximate but accurate conditions

at the edges of the diaphragm, from which the radiation into the wafer

is obtained using a variational approximation procedure. The resonant

mode and resulting radiation field are employed in a perturbation

integral to calculate the Q. For the case of strip electrodes and

diaphragms the calculated results are shown to be in good agreement

with the earlier more cumbersome calculations. In addition the

perturbation calculations are performed for the case of rectangular

electrodes and diaphragms.
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1. Introduction

The composite resonator consists of a uniform thin layer etched

in a small well-defined region of a semiconductor wafer to form a

diaphragm, upon which is deposited a thin piezoelectric film along with

the electrodes to form a resonant region directly on the wafer. In a

1
recent analysis of the composite resonator vibrating in an essentially

thickness-extensional mode it was shown that the quality factor (Q) due

to radiation into the bulk semiconductor is a very sharply varying

function of the ratio of the thickness of the diaphragm to that of the

film if trapping is not present, but not if trapping is present. A

brief explanation of the meaning of the words "energy trapping" is

given in the Introduction of Ref.l. The treatment employs a very

accurate but extremely cumbersome variational approximation technique

and is restricted to the case of strip electrodes and diaphragms.

In this work a perturbation procedure for the calculation of the Q

due to radiation into the semiconductor wafer is presented which is

considerably less cumbersome to use than the earlier variational treat-

ment and is not restricted to the case of strip electrodes and diaphragms.

In the treatment the resonant mode of interest is determined from the

equation for transversely varying essentially thickness-extensional
2

modes in composite resonators and simple approximate but very accurate

conditions at the edges of the diaphragm. This resonant mode is then

used to determine the near field radiation into the semi-conductor wafer

3by means of a variational approximation procedure Of course, as in

the earlier work all radiating plate waves in the wafer are included

in order to achieve accuracy. Finally, the mode in the composite
Ile

%. %***f *~~ ~~ % ~ ***%*5** - * * ~
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2.

resonator and the radiation field in the wafer are employed in a perturb-

ation integral4 to calculate the Q. Calculations are performed for the

cases of rectangular electrodes and diaphragms and strip electrodes and

diaphragms both when trapping is and is not present. For the case of

strip electrodes and diaphragms the calculated results are shown to be
,j 1

in good agreement with the earlier more cumbersome direct calculations

As in the earlier work l all calculations are performed for the particu-

lar case of an aluminum-nitride film on gallium-arsenide. Since the

fundamental essentially thickness-extensional mode will not trap for

an aluminum-nitride film on a gallium-arsenide diaphragm in the flat

plate configuration and the second thickness-extensional mode will

trap for a sufficiently thick aluminum-nitride film5 , the Q is calcu-

lated for the second essentially thickness-extensional mode when

trapping is present and for the fundamental, when trapping is not

present.

2. Perturbation Procedure

Since the coupling is small in the piezoelectric thin film and

the semiconductor is assumed to be nonpiezoelectric, we need consider

only the elastic portion of the equation for the first perturbation of

the eigenfrequency, which may be written in the form4

A iH/2w , w4 A 4 (2.1)

where w and w are the unperturbed and perturbed eigenfrequencies,

respectively, and

H ni (T 9 - u Tl )dS, (2.2)

S



3.

where n. denotes the outwardly directed unit normal to the surface S

of the resonator. Since, as already noted, any piezoelectric coupling

is ignored, the constitutive equation for the stress tensor T.. is

ii

given by

T..c.~k2 (2.3)Tij ' cijklUk, 23

where the c ijk denote the elastic constants and uk is the mechanical

displacement vector. Standard Cartesian tensor notation is employed

along with the summation convention for repeated tensor indices and the

comma convention for partial differentiation with respect to a space

coordinate, as in Ref.4. The normalized displacement field g is
J

defined by

2S
g 2UP N Puu dV (2.4)gJ j ,

in which up denotes the purely real mechanical displacement fieldj

associated with the mode of interest in the composite resonator and

Tp. denotes the associated stress tensor. A cross-section of the
Ii

composite resonator attached to the semiconductor wafer is shown in

Figure 1. A schematic plan view of the assumed composite resonator is

shown in Figure 2 along with the assumed approximate edge condition

(u3 = 0) for the transverely varying thickness-extensional mode ,in

accordance with the explanation in the next section. Thus, for the

problem at hand the surface S in (2.2) denotes the surface along which

the semiconductor portion of the composite resonator abuts the wafer.

The calculated mode in the composite resonator shown in Figure 2

results in tractions t and displacements i that are applied to the

wafer along the surface at which it abuts the resonator as shown in

.~ ~ . ... ' ' . .. ...-..-..
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Figure 3. These tractions t and displacements ii then cause radiation

fields in the wafer, which are calculated by means of a very accurate

variational approximation procedure in Sec.5. These radiation fields

in the wafer produce a reaction back on the composite resonator along S.

The stresses T.. and displacements u. in (2.2) denote this back reaction
i] J

field.

Since the radiating fields in the wafer are chosen to satisfy

the differential equations in and boundary conditions on the major

surfaces of the wafer exactly, in the purely elastic case all that

remains of the appropriate variational principle in which all conditions

3 6
are natural conditions is given by

fI Z-xnkT 8adS +j n, (uii)8TkdS=O0 (2.5)

S S
N C

where S and S denote the portions of the surface along the left end

N C

of the wafer shown in Figure 3 on which natural- and constraint-

7
type conditions , respectively, are prescribed. We note that SN and SC

refer to different portions of the surface for different terms in the

boundary integrals depending on each actual condition at a point. In

(2.5) nk denotes the outwardly directed unit normal to the wafer and

we note that for surfaces along which the diaphragm abuts the wafer

the n2 in (2.2) and (2.5) are equal in magnitude and opposite in sign.

In (2.5) t and 'd are known from the resonant eigensolution T4 ui

and u and k are found from the expressions for the solution field

radiating into the wafer, which are obtained in Sec.5. At this point 0

we note that the reaction ,T from the radiating field is complex
1.' k2Y,
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the real part of which yields a small change in frequency when substi-

tuted in (2.2), which is negligible and not of interest here, and the

imaginary part of which yields the attenuation due to radiation into

the wafer from (2.2) which is sought here. From the well-known rela-

tion w wu,- iw /2Q and (2.1), we obtain

2Q -iwIH (2.6)

3. Transversely Varying Thickness-Extensional Modes

As noted in Sec. 2, a plan view for the determination of the mode

of interest in the composite resonator is shown in Figure 2, in which

the - denotes the electroded region, the S, the side region, the T, the

top (and bottom) region and the C, the corner regions. This notation

is essential for the treatment of the trapped modes, but is not needed

for the untrapped modes because in the untrapped case the edges of the

electrodes are relatively unimportant. It has been shown in Sec.V of

Ref.2 that the homogeneous equation governing the essentially thickness-

extensional modes may be written in the form

a2(n a2 fn -n fn pf-n_ 0  (3.1)n(a-2 a -) -F3f'+ 0
1 2

where n denotes the order of the pure thickness mode in the composite

resonator, both the superscript and subscript f denote the film and

fn= fn in an electroded region while T fnlf in an unelectroded

region, which are defined in Eqs.(4.48) and (4.46), respectively, of

Ref.2 with the aid of the appropriate root of (3.22) of Ref.2, which
0o _f

gives and with (3.20) and c is defined in Eq.(3.12) of Ref.2.
16 If Isn' 33

s
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The expression for the coefficient Mn, which is very important because

its sign indicates whether trapping is or is not present in the flat

composite plate configuration, is given in Eq.(4.44) along with (4.41),

(4.42), (4.37), (4.38) and (4.33) of Ref.2 and clearly is much too

cumbersome to present here 8 . It has also been shown in Sec.V of Ref.2

that the dominant u -displacement field accompanying the mode is given
3

by

fn u fnfn t), usn snfn.
u 3  oU3 f0(Xl,X 2 , = f (XlX 2 ,t), (3.2)

where the superscripts f and s denote the film and semiconductor

diaphragm, respectively, and ou3 represents the thickness dependence

only and is given by
fn fln o fln

u =A Cos Ix +B sin 10x O<x <hoU3 3 fn 3 3 fn 3 3  Y

sn A sln o x s in0 cos %n 3B 3  sin 'snX3 , 0>x3 >-hS, (3.3) .

and the amplitudes are given in Eqs.(5.20) of Ref.2. Furthermore, it

has also been shown in Secs.IV and V of Ref.2 that at an interface

between electroded and unelectroded regions we have the continuity

of the two quantities

fn, dfn/dn (3.4)

where d/dn denotes the normal derivative (here either d/dx or
1 '

d/dx 2). However, the boundary conditions along the edge of the

assumed resonator shown in Fig.2 that are consistent with the

approximation made in obtaining Eq.(3.1) must be explained.

It has been shown that to lowest order the pertinent consti-

tutive equations for in-plane tractions take the form 2

0*"% e. J

J-~ !6
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TII =c 13u3 3 , T22 =c 13u3 3 , T13 = c44(u3,1+ul,3

T 4 , 2,)' T 2 = c6 6 (u +u 0 (3.5)

for both the piezoelectric thin film and the diaphragm essentially

because u1 and u2 are an order of magnitude smaller than u3 for small

wavenumbers along the plate and each differentiation with respect to

x or x2 reduces the order of magnitude by one. On an edge normal

to x the uniqueness theorem9 reveals that we must specify one term

of each of the three products

T11lU) T 12U 2 T 13 3 (3.6)

However, by virtue of the aforementioned ordering Tl2U2 is two orders

of magnitude smaller than each of the other two terms and, hence, may

be neglected, as already indicated in (3.5) Consequently, on a

free edge normal to x we should satisfy

T =11 0, T13 = 0 (3.7)

and on a fixed edge normal to x1 we should satisfy

u1 = 0, u3 = 0. (3.8)

Similar considerations for an edge normal to x reveal that on a free
S2

edge we should satisfy

T = O, T23 0, (3.9)

and on a fixed edge we should satisfy

u 2 = 0, u3 = 0. (3.10)

5'- '," p .. , ' .. ..~* .5, . .rp - , -.- - . , ,, . ", '- "',,'. ',
'
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Since in the approximation made in obtaining Eq.(3.1) governing

the essentially thickness-extensional modes, we have eliminated all

waves except the important one, we can satisfy only one of the two

conditions in each of (3.7)- (3.10). However, since for small wave-

numbers along the plate u3 is large while uI and u2 are small, from

this fact and (3.5) it is clear that one of the two conditions in each

of (3.7)- (3.10) is large and the other is small. Consequently, we

take the small equation in each of (3.7)- (3.10) to be satisfied

approximately and require the solution to satisfy the large equation

in each of (3.7)- (3.10) only. Since in each instance the large

term in each of (3.7)- (3.10) is either u3 or u3,3, we have shown that

for either completely free or completely fixed conditions along the

edges of the diaphragm shown in Fig.2, the appropriate condition is

fn - 0, (3.11)

on account of (3.2) and (3.3). From Fig.l it is clear that the edge

of the film is free while the edge of the diaphragm is essentially

fixed, and we have shown that in this approximation (3.11) is the

appropriate condition for either case. This means that within this

approximation both u3 and either T or T22 vanish simultaneously

along the edge of the resonator.

Since only the semiconductor diaphragm abuts the wafer as shown

in Fig.i only the variables in the semiconductor are relevant here.

However, in order to calculate the tractions tl and displacements u

that the mode in the composite resonator exerts on the wafer as shown

in Fig.3, we need the associated displacement fields us and u in the
1 2

e . 'm 0p C C. ~ I
r
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S

semiconductor diaphragm in addition 
to u3.

In the untrapped case for the fundamental mode for any n, fn

is given by

f cn - ,x eiU, (3.12)

the substitution of which in (3.1) yields

f 2 -f -2 -2 -2
p W c3 3 f +Mn(2 +V2), (3.13)

in which for convenience we have assumed that the upper electrode

covers the entire film since the edges of the electrode are unimportant

because they do not cause exponential decay in the unelectroded region

in the untrapped case. Substituting from (3.12) into the edge condi-

tions (3.11) for the mode of interest, we obtain

T/ 12d, Tr 2w, (3.14)

with which the unperturbed resonant frequency w may be obtained from

(3.13). It has been shown in Sec.V of Ref.2 that for (3.12), we have

u _ (x3) sin 1 cos "x 2 e i nt

1 3 . 2( . ),

u 2  - (x3) Cos sin 5x e i m t  (
2 3) 1X 2 '(.5

where

s sl i o +s2 sin +B I cos o
1 n sX 3  1 s 3 1 s3

+Bs 2  Ks 2 -2 -2 (3.16)
B1 sin V x 3 , + ,

V ..
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s

and K and the amplitudes are given in (4.30) and (4.26), respectively,

of Ref.2.

In the trapped case we have Eq.(3.1) with f Tf in the
'f fn

electroded region denoted - and fn fn in the unelectroded regions

denoted S and T in Fig.2 and as usual ignoring (3.1) in the relatively

unimportant corner regions denoted C. In addition the solution must

satisfy the continuity conditions in (3.4) between the - and S and T

regions and between the S and C and T and C regions and the conditions

(3.11) along the edge of the diaphragm, i.e., at xI =±d and x 2=±w.

Clearly then for the symmetric modes in xI and x the expressions for

fn in each of the respective regions shown in Fig.2 are given by

" (X") S (x')

E cos 1 Cos X2 P fs = (E-e +E +e )cos Vx 2

nT T e v(x2-b) T v(xc-b) o
f (E-e + E+e 2  ) Cos x ,

-f (xl-Z)-v(x2-b) C "(Xl)+V(x2"b)
1nC C 1e  +E e ,

f E 1e 2e

+ ECe E(x1 Z)-v(x 2 -b) +EC e(xl-Z)+V(x2  , (3.17)

3 4E

the substitution of which in (3.1) yields (3.13) along with

f 2 -f -2 2 -2P ) C 331Nn - n(t- )

p CU 3 3 f - M (v 2 _ t) (3.18)

Substituting from (3.17) into (3.4) at xl= and x2=b and into (3.11)

at xl ad and x 2 w, we obtain

-.--
,



1i. .

- i+e--2(d' )

tan e- 2 (d - )

+e-2v(w-b)
e- 2v (w-b) ' .19)

where

S E cos I T Ecosvb
= l-el-

C Ecos cos 7b
- -2-v(w-b)( -e 2 d' ) ( -e)

C -e2v(w-b) C C -2 (d-Z) CE 2C= e El  EC - ElI

C -2(d-A)-2v(w-b) C
4  e E1 . (3.20)

Now, as in Ref.2, from (3.13), (3.18) and Eqs.(3.21), (3.23),

(3.31) and (3.32) of Ref. 2, we obtain

-f ( 2 2-

[c3 02-2 1/2 [ 2c 33 02-2 1/2... f, ( 3 .2 1 )

n n

where

n on f on(P +R )/G (3.22)

Gon on
and R, and P are defined in Eqs.(3.19), (3.24) and (3.33),

respectively, of Ref.2. Equations (3.19), with (3.21) and (3.22)

constitute two independent transcendental equations for t and v for

a given 1, b, d and w, which may readily be solved for the fundamental

mode of interest. The eigenfrequencies for that mode may then be

determined from (3.13).

JI
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In the trapped case since we have growing and decaying solu-

tions in the S and T regions, from Secs.III and V of Ref.2 it is

clear that

sS --- s " (x1-1) S 'X-l') 1 -

Ul = (X3 ) E S e E +e cos VK2

u2 = T S(x)[Ee -Eke cos xl , (3.23)

where

S)2 -2 2 T 2 -2 2" - , ) " -S ( 3 . 2 4 )

sS sT.
and uI  is for the side region and u 2  is for the top region. We

further observe that since all wavenumbers along the resonator are

s ssmall, u2 in the S region and u1 in the T region are negligible for

radiation in the xI- and x 2-directions, respectively, in the wafer,

as discussed more completely in Sec.4. Moreover, it is clear that

sC sCfor the corner regions u1  and u2 may be obtained from (3.23) simply

by replacing the respective trigonometric functions in each term by

the exponential function in brackets in the other term and C is

given by

0 2 2 2
( )2 . 2+v 2) . (3.25)

4. Variable-Crested Waves in Wafer

In this section we obtain the solution functions for the near

field waves with slowly varying crests and the associated dispersion

relations. The displacement equations of motion and the linear elastic

constitutive equations for the nonpiezoelectric gallium-arsenide

semiconductor wafer with x3 along a cube axis take the form10

=.3
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c 1 u 1 + (c 1  + + (c) u +cU +c U CZu
ll1  +l 13 c44 2,12 (c13 +c 4 4  3,13 44 ,22 44 ,33 U 1'

4421 4U2 13 c44) 3 "

c u +(c +c1) +cu +(C +c1)U +C U u
44 311 44 13 ,31 44322 44 132 23 33 3,33 3'

(4.1)

T =c1 j +c u +c u T C U +C U +cU
11 1,I 13 2,2 13 3,3' 22. 13 i, 11 2,2 13 3,3

T33 C"13 1U,1 +C13u 22 +c33 3,3

123 
= c4 4 

( 3P2 +u 2 3 ) T1 2  c4 4 (u 1 2 + 2 1 ) ' T31 c44(u3,1 + a1,3)'

(4.2)

where the carets are used to denote the wafer as distinct from the

diaphragm.

From either Figs.1 or 3 we see that the boundary conditions

on the major surfaces of the semiconducting plate may be written in

the form

Ts = 0 at x = 0 and x =- (4.3)

3j 3 3

in considering waves radiating in the x1 -direction, we first note

that since -v and v are small, from (4.1) and (4.2) it is clear that

2is an order of magnitude smaller than 1s and Usand U 2s an
12I3 1',an u2isa

order of magnitude smaller than uI and uA. Hence, u2, the x2-differental

equation and are negligible for radiation in the xl-direction.

Under these circumstances, from (4.1) we see that the differ-

ential equations that must be satisfied take the reduced form

S ^S s S ^ SS S ^S = S:'S

S MS S S ^S S MS S::Sc U +(c 1 3 +c )u +c 33u 3 3 u (4.4)

44 3,1 13 44 113 3333 ~ 3 ,

:'. ',¢'.., ... , ,'. '.,% _-' .,' .-_-_ .- ..,._. _.- - ,_ ,. . .. . ., .- . . .. . . . . . . . . . . . .
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and from (4.2) and (4.3) the boundary conditions take the reduced form

1s s +C s s =0 at x 0 and x s (4.5)Il3Ul, 1c333Y 3 = 3= =- A45

S A S -I- Ac 4 4 (u, 3 +u 3 1 )=0 at x 3=0 and x = s (4.6)

For waves with slowly varying crests in the x 2direction and

propagating in the +x -direction in the near field consider

SAS s X3 Se s X3) ei~ I- d)a

cos vx 2 (Aae = e e e a1,3 (4. 7)

which satisfies (4.4) provided

S AS 5 A5 5 A5 5 A Ss +os A . =0, A .+a A .=0(.)
CIAI +13 A3 13 1 33A3 (4.8)

SAS -s s 0 - Bs + s as 0 (4.9)1lIB1 C 13 i3 , 13 1 33 3 = A%

where

S S =- ^2 Sc-2 s 2
1 1 lC, -c 4T'+p P

S . (C s ,.a13  c13 + 44  ,7

0 S s - 2 s ^2 +ps U 2
33 =  44 - c331s (4.10)

Each of the two systems of linear homogeneous algebraic equations in

two amplitudes yields nontrivial solutions when the determinant of the

coefficients of the amplitudes vanishes. Both determinants are
q r2 2 2. "

identical and each is quadratic in IS and w Thus, for a given
tand w each determinant yields two independent [I ((S) ,  (2) ) and each
S S '

" (i) '
AM yields amplitude ratios from each system of linear algebraic

equations, i.e., (4.8) and (4.9). Hence, there are four amplitude

ratios, which we denote by

1  - i -S A3 I 3 .(.11
si siAsi si sisi
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As a solution of the boundary conditions (4.5) and (4.6), we

take

2 A i71x x -iTs i 1Xld

AS -m Zm (A3 -i sm x x -d iWt
u Cos Vx (A +B e ) e e
u3 = os 2  3 3 m -in rx

m=l

2 i •
as AsmAS m 3 A - 3 i 1(x1-d) iUvt
u l cos Vx (4 A3 e +V IB e )e e

m1 (4.12)

Substituting from (4.12) into the boundary conditions (4.5) and (4.6)

we obtain
2 "

A sn (C s sn cs + sn s lsn c3sn )3 (13 33sn 3 kc1 3 s "=
n=l

2

2sn sn A n(. + ) 0+3 (Tsn ) + 3  (csn c
n=l

2 A9  AAAS

Z [sn( sn A ~ ~ lAi]3n + )e sn + B +) sn ] = (4.13)

1 A3 13 +33sne 3 13 333sn
n-I

2 A s

n=l

Equations (4.13) constitute a system of four linear homogeneous alge-

alonghwithlthenonsrivialnsrelation when ).

sn _sn

braic equations in A ( and whi2) are r entrale caswor

the determinant of the coefficients vanishes. Calculations are
1al 2 ^ sn ^sn ^sn sn

performed in the usual wy and yield the 7 n, and .

along with the dispersion relation w- w( ) .

The functions in (4.12) are for either the untrapped case or

the electroded region for the trapped case and since for slowly varying

crests only the slowly varying terms, i.e., the cos Vx2 in (4.12),

which have no influence on the radiating waves or the dispersion

relation, changeY it is not purposeful to write the solution for any

other regions for the trapped case. From the solution the lowest 17

real dispersion curves for the bulk gallium-arsenide plate have been

,.' , .,' ',e:., ' ,,.' .,,' , ,,' ,,.' . ' ,,/ -.. ,'''.,'. .; .;,'. . ... .. .. - .v .". .;., .'. .. ..-...- , .... '.,-. ,',.
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calculated and are shown in dimensionless form in Fig.4, which is

identical with Fig.6 of Ref.l since for slowly varying crests, the

crests do not influence the dispersion relation w For the

fundamental essentially thickness-extensional resonance of the

composite resonator consisting of a 7 4m thick aluminum-nitride film

on a 14 um thick gallium-arsenide diaphragm, which is around 132 MHz,

this number of dispersion curves is for a gallium-arsenide wafer

thickness of about 5 mils. In this work we perform calculations for

wafer thicknesses up to 8 mils for which there are 30 real dispersion

curves for a frequency of 132 MHz. However, we do not bother to show

the figure for more than 17.

Similarly, since statements equivalent to the foregoing hold

for waves with slowly varying crests in the x1 -direction and propagating

in the x 2-direction in the near field, the differential equations and

boundary conditions that must be satisfied may be obtained from

(4.4)- (4.6) simply by replacing all indices 1 by 2 in (4.4)- (4.6).

Under these circumstances the near field radiating solution takes the

form

Si7smX +^3 m A x3  iv(x 2 "w) iWt
u3  cos xI A s +B e )e e

m=l

2AA
S SmASm *o s- X 3 smssm -i smx iv(x 2 -W)ei t
u2 =Cos xl (p A 3 e +v B3 e s 3 )e e

m=l (4.14)

I
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in place of the form shown in (4.12). From this solution we obtain the

propagating dispersion curves for near field radiating waves in the

x -direction. The dispersion curves are identical with those in Fig.4.

2

5. Variational Analysis of Radiation into Wafer

In this section we determine the waves radiating into the semi-

conductor wafer due to the tractions and displacements resulting from

the mode in the composite resonator by means of a variational approxi-

mation procedure, as indicated in Sec.2. Since the near radiation

fields emanate from the edges of the diaphragm, which are normal to x

and x2, respectively, we may determine the near fields radiating in

the x1- and x2-directions separately. Accordingly, we first consider

radiation in the x1 -direction. From Fig.3 we see that the edge of the

wafer below the diaphragm is traction free, i.e., Tj = 0. In Sec.3 we

have shown that for the mode in the resonator TI2 vanishes to the

order of approximation throughout and u3 and T both vanish

simultaneously along the edge of the resonator , i. e., where the

diaphragm abuts the wafer, while both T and uI exist along the same

edge. Furthermore, in Sec.4 it is shown that since the transverse

mode shape is slowly varying in the wafer, for radiating waves propa-

11
gating in the xl-direction in the wafer u2 is negligible . As a

consequence of the foregoing, for propagation in the +xldirection

in the untrapped case Eq.(2.5) takes the form

i-.. ., . ''...''.-.''.o."'.- "'.- ": " °'.'" -"-" "". "%.'-- " .' " l' '._ . . _ ' °-..%.,V V V -. . -
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hs

w -

^S ^ s sA

0

(-T+T u3 ) j dx3 + [_ [ g( ) g T) S13 33 Xl=d 3U gl 1I 1

ui 8T I dx3J 0 (5.1)1
3 13 Xl=d

where, as already indicated, the forcing terms resulting from the mode

in the composite resonator are T and In the trapped case, the
13 g1

integral from -w to w is replaced by integrals over the S and C regions, C

respectively, i.e., from -w to -b and -b to b and b to w, in accordance

S S
with the solution in (3.17) and the expressions for u1 and u2 given

and discussed at the end of Sec.3. For radiation in the x2-direction

we simply interchange subscripts 1 and 2 and replace w by d in (5.1)

for the untrapped case and w by d and b by I for the trapped case.

For radiation in the x -direction we now expand the solution

in the wafer as a sum of waves with slowly varying crests in the

x2-direction, which were discussed in Sec.4 and are given in (4.12).

Thus

"a I Sz  ) a (  a 1 l 3 (5.2)

N.

* t~~S u% a& l . . ' h
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where each of the U) are of the form given in (4.12) and N denotes

the number of branches of the dispersion curves required for the N 3
As ( )

propagating plate waves for a given wafer thickness. Since the a

are fixed, only the KS are varied when (5.2) is substituted into

(5.1). Accordingly, substituting from (5.2) into (5.1). employing

(4.2) and performing the integrations, we obtain an equation Gf the

form

A K +CS6 0, (5.3)

where

2 2
z I I g(Ism msm issm n^s )-hSTl a 3A = 7 snF.hS£ l +;S5n) 43

m=l n=1 sm'sn +n 5gas~m + s ) h s iP a T 3

a= O,sm^sn -sn^sn ^sm )Ons(sSm^sn
tgrlU+T; )B 3 g(a )A

m sn -h o ' s sn-h ,, 3_s 5 , o a . 3n-
As sin ^ ̂s 3 A 0 A sminAfl AsfASIn

+g( - )A, iLg- h~sm+ snh ( Si1l +( 5)A3Bg(')Bsm +  n-S C 15 5 3

s o .^sm-sn -sm -sn ^( o s~n+s m
+g(- F T ) )S
+_( 71 _s( V:..h g+Zrs B

m sn -h s  1 5a)3 m 'h a ia 3, j

(5 --

S I 3  ~ iA ~ AW A
c44 sin Ad A s- ( +Bs m g(-n ,'s)+ sinc m°-h3  sm s 5  s3c n s -h

~M=i

sl [*j 0 ^sm A

2B A g s +B 9 -hng3 LA30 s sMi' sh 3Sgs

... -. .. . . ... . .. -..- ,.. .. % ,,.---,,-,
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2

N- 5 1 ssin d Ts 1 gsT .10hs+ 1~ 7s g(Lhs

sl A o s2 " oBI1 g c( ' S) -h s +B I gc( sm'K)-hs

2
;sm F ~ no) s2 0 O)_s

+L 50 Li s sm' %-hs + 1 g sm s-h
m 1

+ Bs1  ( s' ]s )hS + B s2_ (ls 1) (-A 0 (5.5)+ m BI gh B1 c-sm x s-h s

and N is the normalization factor, which is defined in (2.4) and for

the mode in the composite resonator is given by

2 dw f g (A flB fl o hf .sl sl o o
N~~dL gsc(A 3 ,B3  fo + psgsc(A 3 ,B3  s)hs] , (5.6)

where h
h 2

s(AB,)h (Acos Tc+B sin T) 2 dx
h I

S[ A2 B )sin(27x)-4AB cos2 (x) +2(A 2 +B 2 x hh 2  (57)

In (5.4) and (5.5) we have employed the definitions

Asm -AS sm

Tic iA3r(c 11 d +c 137r1)

Asm ASmn A + Aa Asm
"5c iA30 c44 (- %m" f

Asm .sm A sm of
ICf= iB3 c (t C11 0 a - l3  )

AM ASin A Act Asm°' 5a iB Ryc 44 §a - Tm V f(58
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h
h 2 iOh ih1

g(e)h2 ei@X dx 1(e 2- e 0

= h2 -h I  , 9=0 (5.9)

(6 e cos qpdx [le (Cosvph i sin ch) ,.
h i 2i Gh h

- (e -11-9, 9= ,49

O eiex sin-0dx C [ e2 (cosc h- i -sin oh)], 9#Cm

sh =h s11) a= (e i  -l)-i , ec•.
(5.10)

The foregoing is for the untrapped case. For the trapped case A25 is

unchanged and C may be obtained from the expressions in (5.5) simply

by replacing sin d by t cos 7/sinh §(d-2) and C by Cs and N takes

the form

N + sin 2 )+ 2( cos e ) 2e (dO 2§(d-e) - 2§(d-.)
21- e 5n

+( snv-) C os .) -,,,-v] ...0

s(b [sinh 2v(w-b) - 2,v(w-b)]]
× b + si 2 +2 -2V(w-b)) V

* f flB fl o0 h( sl sl o 0 0

× fgsc(A3  B3 B (Y 3 f)hs (5.11) ,

in place of (5.6). Since the variations in (5.3) are arbitrary, we obtain
the inhomogeneous linear algebraic equations for he K( )

theinhmogneos iner agebaiceqatins or heK in the forms

N S(a)_ S ( 2

K S A ;'C 1 ., N. (5.12)

I,

So

a~ a ~ - ~ .~% a
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In a similar way for radiation in the x 2-direction, we obtain

ST 8=1 . M (5.13)

y=l

where A is given in (5.4) and C may be obtained from the expression

in (5.5) for the untrapped case and the revised expression for the

trapped case simply by replacing by -, d by w and A by b.

Equations (5.12) and (5.13) each constitute N inhomogeneous linear

algebraic equations for the N unknowns K'() from (5.12) and the
S

A )(Y) a h Y)
unknowns K) from (5.13), respectively. When the KS an th

have been determined, the near field radiating solution is known.

6. Quality Factor Resulting from Radiation

In this section we calculate the Q due to radiation into the

semiconductor wafer from the analyses presented in the previous

sections. In accordance with Secs.3-5 it is clear that in the

untrapped case the perturbation integral takes the form

w 0

= x2[ J 3T 1 3  1 1) Xl=d + (313 - 11g xld xl
-w _-hs

d 0
+ [_xT s+T s A-Ts AT-sxj J 3T23  2 2 g2 ) + ( Tu3 T23 2 2 9 2 )xw] , (6.1)

-d 3 2 22 w 32-2 =w 3
-h

while in the trapped case the integral from -w to w is replaced by

integrals from -w to -b and -b to b and b to w and the integral from

-d to d is replaced by integrals from -d to -L and -2 to I and I to d,

in accordance with the solution in (3.17) and the expressions for u

and u2 given and discussed at the end of Sec.3. Substituting the

... .. . . ..... . " e: , --,- %S-4.% S¢, .. -< ,, ' : - ,'<'"
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imaginary parts of the solutions determined in Secs.3 and 5

into (6.1) for the untrapped case and into the equivalent integral

for the trapped case and performing the integrations, we

obtain

-sin + ---) 26.2)
HI si L \~ + /-v KS S 1 -S

Ssin -w d + sin 2 d) (6.2)C)
Hi +(62

in the untrapped case and

R o COS [b + sin vb + cos 'b
N = sinh §(d-) V 2v sinh v(w-b)

x s sinh 2v(w-b) - 2v(w-b)J 2

vcos b [ sins ~ fl + co 2)
v(w-b) 2§ sinh s(d-2)

N H(a(CY)_ (a))

x [sinh 2 (d-)2) - 2t (d-.e)] K K (Hl7 + T)" (6.3)

in the trapped case, where

1 c44Al 3'a f-ms- c s.Ls ( ' -hs +B 3cg(sm'%-h
- i1

Asm 0~ 1 L s n~~s3 2c 0 s I

si4 A* ABC A 0

-Bt gc t511 'r-hS] 3 (i [Tsm) s 5 
-m si g (..

+ _s ^,M oY 0s-m* Ao~ e

B a3 gs(- 's sh s - B3ci gs( , s).hS1 j

~,*.*.*** *.*~. . .
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Um=l

s2 (^a g0 m s5 [As gs(cts o I gs(_'elsm 0
-B9H ) T 1)- e) s _s 5 I sm S ~ )h~ ssm'%s-h

s2 . 0 +^smf sl ^ 0
+lC*0(1a A g (- ] )s

+BlIlgc(_qsm., l S).-hs +B 1gC .smIK s).hS] 5 I gs(.sm, s).hS
OB2  ~m ; [Al jf.OS s2 O)e

1 0 BSl o11 0s s
s2 ('s'B)h 9 g(-7ms -hs +Bl1 gc(' sms

+AI gs ( m;ss 1c m Sc s

+ smi sl o) s2 o s -e o) sl _e 0
+A+A 1 ( sm'  s +B gcT-h1 I sm')'s+BI g-hs  sm) sB s-n

ASUIs sI 1a c s I m

+Bs2 g 0) s  (6.4)

Either Eq.(6.2) or (6. 3) may now be used to calculate the Q from (2.6)

Of course, as in the earlier work I all radiating plate waves in the

thick region of the gallium-arsenide are included to achieve accuracy.

Since at a given frequency the number of radiating waves in a plate

goes up significantly with thickness, when trapping is not present we

have considered gallium-arsenide wafers no thicker than 8 mils at a

frequency around 132 MHz, for which there are 30 radiating plate

waves. Results are presented for wafer thicknesses ranging from

4 mils to 8 mils because this is considered to be within the practical

range. For the untrapped case the results presented are for a film

thickness of 7 microns and a diaphragm thickness of 14 microns. Both

strip diaphragms 600 microns wide and square diaphragms with lateral

dimensions of 600 microns x 600 microns were considered. The strips

are treared for comparison with the earlier work I
. The results can

readily be obtained for the strip case from the analysis for the

N-.
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rectangular case simply by allowing w and b to get very large compared

with I and d, for which V - 0 and the C and T regions are eliminated

as is radiation in the x 2-direction. For the trapped case the results

presented are for a film thickness of 12 microns and a diaphragm

thickness of 14 microns because the trapping is considerably better

for this combination of thicknesses and trapping does not exist for

5
the other at the second thickness mode . For this combination of

thicknesses the second thickness mode is around 250 MHz. In the

trapped case both strip electrodes 500 microns wide and square

electrodes with lateral dimensions of 500 microns x 500 microns were

considered. The lateral dimensions of both the strip and square

diaphragms was varied and the wafer thickness is 6 mils.

In the absence of trapping for the strip case the values of Q

calculated from Eq.(2.6) of this work are plotted as the solid curve

in Fig. 5, in which the dotted curve from Fig.8 of Ref.l is also

plotted for purposes of comparison. It can be seen from the figure

that the agreement is quite good. However, although the highest Q's

calculated in this work are very nearly the same as those obtained

in the earlier more cumbersome direct calculation , the lowest Q's

calculated by means of the perturbation procedure tend to be nearly

an order of magnitude higher than those calculated by the earlier

1direct procedure . We are not absolutely sure of the reason for this

discrepancy, but there are two possibilities. The perturbation

procedure might be tending to lose its accuracy for low Q because of

the increased radiation or the resonant frequency might not have been

sufficiently precisely determined by means of the earlier direct

procedure for the accurate determination of the lowest Q values.
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However, Fig.5 reveals that the highest Q's calculated by the perturba-

tion procedure are consistently slightly higher than those calculated

using the earlier direct procedure, which tends to support the second

possibility. The figure also shows that the location of the peaks and

valleys of Q with wafer thickness determined by means of the perturba-

tion procedure is in quite good agreement with those obtained from

the earlier direct calculation .Alsolin the absence of trapping

the Q's calculated from Eq.(2.6) for the square diaphragn are plotted

in Fig.6. It can be seen from the figure that the peaks and valleys

are in essentially the same positions as in the strip case, but that

the Q's are considerably lower, roughly between 1/2 to 2/3 of the

values in the strip case. This is as expected because of the radia-

tion in two orthogonal directions for rectangular diaphragms. When

trapping is present the Q's calculated from Eq.(2.6) for both the

strip and square case are plotted in Fig.7 as a function of (d-2),

i.e., the distance from the edge of the electrode to the edge of the

diaphragm. It can be seen from the figure that, as expected, Q

increases very rapidly with (d- 2) and for the same value of (d- 2)

the Q is about twice as large in the strip case as in the rectangular

case. If a film thickness of, say, 8 microns had been employed, the

required (d- 2) for good Q would be much larger because although

trapping is present for that ratio of thicknesses, the dispersion

curve for the trapped mode, i.e., the value of Mny indicates that the

spatial decay rate at resonance is much slower than for the ratio of

thicknesses considered here.

% %%



27. .6

Acknowledgements

We wish to thank Y.S. Zhou for help with the calculations.

This work was supported in part by the Air Force Office of

Scientific Research under Grant No. AFOSR-84-0351.

',- ,.' . -;'--"..'.;'.% '2 V ',".--..-.--..- .- . ,.% '...........'.,' .'..'..'..'-.V -. '% ,  -... '.,,..-. ,. ..:,.,.: -,- .-. ,-,.-_.-_..,,.-. -. ,. ,. . ,.'I.

- ' " " . ' " ' " "' ' , " ' " -' '- '=. ',"' , ''r. ',.P .P' 
' r

' " 'p



28.

REFERENCES

1. D.V. Shick, D.S. Stevens and H.F. Tiersten, "Quality Factor of

the Piezoelectric Thin Film on Semiconductor Composite Resonator

Resulting from Radiation into the Semiconductor Wafer," J. Appl.
Phys., 60, 2238 (1986).

2. H.F. Tiersten and D.S. Stevens, "An Analysis of Thickness-

Extensional Trapped Energy Resonant Device Structures with
Rectangular Electrodes in the Piezoelectric Thin Film on Silicon
Configuration," J. Appl. Phys., 54, 5893 (1983).

3. H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New
York, 1969), Chap.6, Sec.4

4. H.F. Tiersten and B.K. Sinha, "A Perturbation Analysis of the
Attenuation and Dispersion of Surface Waves," J. Appl. Phys., 49,
87 (1978).

5. In Ref.l it incorrectly states that the second thickness-extensional
mode will trap for any ratio of film thickness to diaphragm thick-
ness for aluminum-nitride on gallium-arsenide. It will trap for
ratios of film thickness to diaphragm thickness larger than .69.

6. Ref.1, Eq.(16).

7. Since constraint-type conditions arise in (2.5) as natural condi-
tions because of the use of Lagrange multipliers, the approximating
functions need not satisfy them when (2.5) is employed.

f f f

8. In Eq.(4.37) of Ref.2 the expression n14 = (cf r - f)cos hf was
inadvertently omitted. 

f2

9. Ref.3, Chap.5, Sec.4, Chap.15, Sec.5.

10. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York,

1973), Vol.I, p. 210 . 0

11. For radiation in the x2 -direction the subscripts 1 and 2 are

interchanged throughout the explanation.

12. The sign of the wavenumber for each wave is selected so as to
correspond to radiation in the + xl-direction.



FIGURE CAPTIONS

Figure I Cross-Section of a Composite Resonator

Figure 2 Plan View of Model for Analyses of Composite Resonator
Mode Shapes

Figure 3 Cross-Section for Variational Analysis of Radiation
into Wafer

Figure 4 Dispersion Curves for the Gallium-Arsenide Wafer
with Q the Dimensionless Frequency Normalized with
Respect to the First Thickness-Shear Frequency

Figure 5 Quality Factor Versus Wafer Thickness when Trapping
is not Present for the Strip Composite Resonator.

The dotted curves are from Fig.8 of Ref.l.

Figure 6 Quality Factor Versus Wafer Thickness when Trapping
is not Present for the Rectangular Composite Resonator

Figure 7 Quality Factor Versus Distance from Edge of Electrode
to Edge of Diaphragm when Trapping is Present
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